• Title/Summary/Keyword: Sobolev space

Search Result 74, Processing Time 0.02 seconds

STABILITY AND TOPOLOGY OF TRANSLATING SOLITONS FOR THE MEAN CURVATURE FLOW WITH THE SMALL Lm NORM OF THE SECOND FUNDAMENTAL FORM

  • Eungmo, Nam;Juncheol, Pyo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.1
    • /
    • pp.171-184
    • /
    • 2023
  • In this paper, we show that a complete translating soliton Σm in ℝn for the mean curvature flow is stable with respect to weighted volume functional if Σ satisfies that the Lm norm of the second fundamental form is smaller than an explicit constant that depends only on the dimension of Σ and the Sobolev constant provided in Michael and Simon [12]. Under the same assumption, we also prove that under this upper bound, there is no non-trivial f-harmonic 1-form of L2f on Σ. With the additional assumption that Σ is contained in an upper half-space with respect to the translating direction then it has only one end.

SMALL DATA SCATTERING OF HARTREE TYPE FRACTIONAL SCHRÖDINGER EQUATIONS IN DIMENSION 2 AND 3

  • Cho, Yonggeun;Ozawa, Tohru
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.373-390
    • /
    • 2018
  • In this paper we study the small-data scattering of the d dimensional fractional $Schr{\ddot{o}}dinger$ equations with d = 2, 3, $L{\acute{e}}vy$ index 1 < ${\alpha}$ < 2 and Hartree type nonlinearity $F(u)={\mu}({\mid}x{\mid}^{-{\gamma}}{\ast}{\mid}u{\mid}^2)u$ with max(${\alpha}$, ${\frac{2d}{2d-1}}$) < ${\gamma}{\leq}2$, ${\gamma}$ < d. This equation is scaling-critical in ${\dot{H}}^{s_c}$, $s_c={\frac{{\gamma}-{\alpha}}{2}}$. We show that the solution scatters in $H^{s,1}$ for any s > $s_c$, where $H^{s,1}$ is a space of Sobolev type taking in angular regularity with norm defined by ${\parallel}{\varphi}{\parallel}_{H^{s,1}}={\parallel}{\varphi}{\parallel}_{H^s}+{\parallel}{\nabla}_{{\mathbb{S}}{\varphi}}{\parallel}_{H^s}$. For this purpose we use the recently developed Strichartz estimate which is $L^2$-averaged on the unit sphere ${\mathbb{S}}^{d-1}$ and utilize $U^p-V^p$ space argument.

CENTRAL LIMIT TYPE THEOREM FOR WEIGHTED PARTICLE SYSTEMS

  • Cho, Nhan-Sook;Kwon, Young-Mee
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.5
    • /
    • pp.773-793
    • /
    • 2004
  • We consider a system of particles with locations { $X_{i}$ $^{n}$ (t):t$\geq$0,i=1,…,n} in $R^{d}$ , time-varying weights { $A_{i}$ $^{n}$ (t) : t $\geq$0,i = 1,…,n} and weighted empirical measure processes $V^{n}$ (t)=1/n$\Sigma$$_{i=1}$$^{n}$ $A_{i}$ $^{n}$ (t)$\delta$ $X_{i}$ $^{n}$ (t), where $\delta$$_{x}$ is the Dirac measure. It is known that there exists the limit of { $V_{n}$ } in the week* topology on M( $R^{d}$ ) under suitable conditions. If { $X_{i}$ $^{n}$ , $A_{i}$ $^{n}$ , $V^{n}$ } satisfies some diffusion equations, applying Ito formula, we prove a central limit type theorem for the empirical process { $V^{n}$ }, i.e., we consider the convergence of the processes η$_{t}$ $^{n}$ ≡ n( $V^{n}$ -V). Besides, we study a characterization of its limit.t.

FINITE SPEED OF PROPAGATION IN DEGENERATE EINSTEIN BROWNIAN MOTION MODEL

  • HEVAGE, ISANKA GARLI;IBRAGIMOV, AKIF
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.2
    • /
    • pp.108-120
    • /
    • 2022
  • We considered qualitative behaviour of the generalization of Einstein's model of Brownian motion when the key parameter of the time interval of free jump degenerates. Fluids will be characterised by number of particles per unit volume (density of fluid) at point of observation. Degeneration of the phenomenon manifests in two scenarios: a) flow of the fluid, which is highly dispersing like a non-dense gas and b) flow of fluid far away from the source of flow, when the velocity of the flow is incomparably smaller than the gradient of the density. First, we will show that both types of flows can be modeled using the Einstein paradigm. We will investigate the question: What features will particle flow exhibit if the time interval of the free jump is inverse proportional to the density and its gradient ? We will show that in this scenario, the flow exhibits localization property, namely: if at some moment of time t0 in the region, the gradient of the density or density itself is equal to zero, then for some T during time interval [t0, t0 + T] there is no flow in the region. This directly links to Barenblatt's finite speed of propagation property for the degenerate equation. The method of the proof is very different from Barenblatt's method and based on the application of Ladyzhenskaya - De Giorgi iterative scheme and Vespri - Tedeev technique. From PDE point of view it assumed that solution exists in appropriate Sobolev type of space.