• Title/Summary/Keyword: So/Xo ratio

Search Result 2, Processing Time 0.017 seconds

Abnormal Behavior of Ordinary Heterotrophic Organism Active Biomass at Different Substrate/Microorganisms Ratios in Batch Test (회분식 실험 Substrate/Microorganisms 비에 따른 종속영양미생물의 특이거동 연구)

  • Lee, Byung-Joon;Wentzel, M.C.;Ekama, G.A.;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.3
    • /
    • pp.197-205
    • /
    • 2004
  • Batch test methods have developed for a long time to measure kinetic and stoichiometric parameters which are required to perform steady state design and mathematical modelling of activated sludge processes. However, at various So/Xo ratios, abnormal behaviors of ordinary heterotrophic organism in batch tests have been reported in many researches. Thus, in this research, abnormal behaviors of heterotrophs in batch tests were investigated at various So/Xo conditions by measuring and interpreting oxygen utilization rate. As So/Xo ratio increased, the calculated values of maximum specific growth rates, ${\mu}_{H,max}$ and $K_{MP,max}$, increased. However, at a certain point of So/Xo (around 10mgCOD/mgMLAVSS), ${\mu}_{H,max}$ and $K_{MP,max}$ values started to decrease. According to this observation, three prominent behaviours of heterotrophs were identified at various So/Xo conditions. (1) At low So/Xo region (below 5 mgCOD/mgMLAVSS), the oxygen utilization rate of heterotrophs in batch tests were almost stable and consequently yielded lower maximum specific growth rate. (2) At high So/Xo region (up to 5~10 mgCOD/mgMLAVSS), oxygen utilization rate incresed sharply with time and indicated more upward curvature than the predicted OUR with conventional activated sludge model, which consists of single hetetrotrophs group. Thus, in this region, competition model of two organisms, fast-grower and slow-grower, seemed to be appropriate. (3) At extremely high So/Xo region (over 10mgCOD/mgMLAVSS), significant oxygen utilization rate was still observed even after depletion of readily biodegradable COD. This might be caused by retarded utilization of intermediates which were generated by self inhibition mechanism in the process of RBCOD uptake.

A Comparison of Antioxidant Effects among Non-fermented and Fermented Columbian Coffee, and Luwak Coffee Beans (발효 유무에 따른 콜롬비아 커피와 루왁커피의 항산화 활성 비교연구)

  • Kim, Song-Suk
    • Korean journal of food and cookery science
    • /
    • v.30 no.6
    • /
    • pp.757-766
    • /
    • 2014
  • The purpose of this study was to investigate the antioxidant effects of non-fermented (CAC) and Monascus pilosus-fermented Columbia arabica coffee (FCAC), as well as Luwak coffee (LC) beans. The results indicated that total polyphenols content (mg/g of dry basis) was highest in CAC (70.69), followed by LC (62.07), and FCAC (41.38). However, the ratio of total flavonoids/polyphenols in FCAC was the highest. In terms of electron donating ability (%, coffee mg/mL), CAC was significantly higher than LC and FCAC. Regardless of fermentation, ferric reducing antioxidant powers were similar in CAC and FCAC and lowest in LC. LC also had the highest inhibitory activity against xanthine oxidase (XO). However FAAC had the highest inhibitory activity against aldehyde oxidase (AO), with nearly three times the levels found in CAC and LC. According to the above results, FCAC had a higher ratio of flavonoids/polyphenols and iron chelating activity than CAC. FCAC also had the highest AO inhibitory activity among the three experimental coffee beans. The results suggest that further studies are required to evaluate the bioactive components of various coffee beans so as to determine the potential benefits that coffee may have on preventing oxidative stress-related conditions.