• Title/Summary/Keyword: Snubber Circuit

Search Result 241, Processing Time 0.028 seconds

Induction Heating Water Heater using Dual Mode Phase Shifted ZVS-PWM High Frequency Resonant Inverter (듀얼 모드 위상 시프트 ZVS PWM 제어 고주파 공진형 인버터를 이용한 IH 온수기)

  • Lee, Sang-Wook;Ryu, Yeoi-Joung;Woo, Kyung-Il;Park, Han-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.2
    • /
    • pp.82-89
    • /
    • 2018
  • This paper presents a novel prototype of dual mode control based phase shift ZVS PWM high frequency load resonant inverter with lossless snubber capacitors in addition to a single active auxiliary resonant snubber for electromagnetic induction heating(IH) foam metal based consumer fluid dual packs(DPA) heater. The operating principle in steady state and unique features of this voltage source soft switching high frequency inverter circuit topology are described in this paper. The lossless snubber and auxiliary active resonant snubber assisted constant frequency phase shift ZVS PWM high frequency load resonant inverter employing IGBT power modules actually is capable of achieving zero voltage soft commutation over a widely specified power regulation range from full power to low power. The steady state operating performances of this dual mode phase shift PWM series load resonant high frequency inverter are evaluated and discussed on the basis of simulation and experimental results for induction heated foam metal heater which is designed for compact and high efficient moving fluid heating appliance in the consumer pipeline systems.

Non-Dissipative Snubber for High Switching Frequency and High Power Density Step-Down Converters (고속 스위칭 및 고 전력밀도 강압형 컨버터를 위한 무손실 스너버)

  • Shin, Jung-Min;Park, Chul-Wan;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.345-352
    • /
    • 2017
  • In this paper, a non-dissipative snubber for reducing the switching losses in the step down converter is proposed. The conventional step down converter, e.g., buck converter, suffers from serious switching losses and consequentially heat generation because of its hard switching. Thus, it is unsuitable for high switching frequency operation. Reduction of the reactive components' size, such as an output inductor and capacitor, is difficult. The proposed snubber can slow down the increasing current slopes and switch voltage at turn-on and turn-off transients, thereby significantly reducing the switching loses. Additionally, the slowly increasing current during switch turn-on transition, can effectively solve the output rectifier diode reverse recovery problem. Therefore, the proposed non-dissipative snubber not only leads to the efficiency of converter operation at high switching frequency but also reduces the reactive components size in proportion to the switching frequency. To confirm the validity of the proposed circuit, theoretical analysis and experimental results from a 150 W, 1 MHz prototype are presented.

A Flyback Transformer linked Soft Switching PWM DC-DC Power Converter using Trapped Energy Recovery Passive Quasi-Resonant Snubbers with an Auxiliary Three-Winding Transformer

  • Ahmed Tarek;Chandhaket Srawouth;Nakaoka Mutsuo;Jung Song Hwa;Lee Hyun-Woo
    • Journal of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.237-245
    • /
    • 2004
  • In this paper, a two-switch high frequency flyback transformer linked zero voltage soft switching PWM DC-DC power converter implemented for distributed DC- feeding power conditioning supplies is proposed and discussed. This switch mode power converter circuit is mainly based on two main active power semiconductor switches and a main flyback high frequency transformer linked DC-DC converter in which, two passive lossless quasi-resonant snubbers with pulse current regeneration loops for energy recovery to the DC supply voltages composed of a three winding auxiliary high frequency pulse transformer, auxiliary capacitors and auxiliary diodes for inductive energy recovery discharge blocking due to snubber capacitors are introduced to achieve zero voltage soft switching from light to full load conditions. It is clarified that the passive resonant snubber-assisted soft switching PWM DC-DC power converter has some advantages such as simple circuit configuration, low cost, simple control scheme, high efficiency and lowered noises due to the soft switching commutation. Its operating principle is also described using each mode equivalent circuit. To determine the optimum resonant snubber circuit parameters, some practical design considerations are discussed and evaluated in this paper. Moreover, through experimentation the practical effectiveness of the proposed soft switching PWM DC-DC power converter using IGBTs is evaluated and compared with a hard switching PWM DC-DC power converter.

A Study on Input${\cdot}$Output Waveform Solutions and Harmonics Analyses for a Novel PFC Step-up Converter (새로운 PFC 스텝-업 컨버터의 입출력 파형해석 및 고조파분석에 관한 연구)

  • Kwak Dong-Kurl
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.12
    • /
    • pp.622-628
    • /
    • 2005
  • This paper is given a full detail of mathematical analyses of input current and output voltage for a novel active type power factor correction (PFC) converter. These are compared with harmonics components of input current for a conventional PFC converter. The proposed PFC converter is constructed in using a new loss-less snubber circuit to achieve a soft switching of control device. Also the proposed converter for discontinuous conduction mode (DCM) eliminates the complicated circuit control requirement and reduces the size of components. The input current waveform in the proposed converter is got to be a sinusoidal form of discontinuous pulse in proportion to magnitude of ac input voltage under the constant duty cycle switching. Therefore, input power factor is nearly unity and the control method is simple. Particularly, the stored energy of loss-less snubber capacitor is recovered with input side and increases input current from resonant operation. The result is that input power factor of the proposed converter is higher than that of conventional PFC converter. Some simulative results on computer and experimental results are included to confirm the validity of the analytical results.

An Improved Soft Switching Two-transistor Forward Converter (개선된 소프트 스위칭 Two-transistor forward converter)

  • Kim, Marn-Go
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.137-140
    • /
    • 2000
  • This paper proposes an improved soft switching two-transistor forward converter which uses a novel lossless snubber circuit to effectively control the turn-off dv/dt rate of the main transistors. In the proposed soft switching implementation the turn-off voltage traces across the main two transistors are almost the same contributing to reduce the total capacitive turn-on loss and the snubber current is divided into the two transistors resulting in distributed thermal stresses

  • PDF

Forward Converter using Planar transformer and Lossless Snubber (Planar 변압기와 무손실 스너버를 사용한 포워드 컨버터)

  • 박경수;이재학;김춘삼;김윤호
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.480-484
    • /
    • 1999
  • In this paper, a design technique of SMPS using plannar transformer is described. The application of plannar transformer can solve the space problem which occurs when it is installed on PCB since plannar transformer has low profile. In addition a lossless snubber circuit added to reduce the device stress and to improve the system efficiency. The designed system is verifed by simulation and experiment with comparison of efficiency between the system using conventional transformer and the system using plannar transformer.

  • PDF

Three-phase current type PWM converter using resonant DC Link snubber (공진 DC 링크 스너버를 이용한 3상 전류형 PWM 컨버터)

  • Suh, Ki-Youn;Lee, Hyun-Woo;Lee, Soo-Heun;Mun, Sang-Pil;Kim, Young-Mun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1015-1019
    • /
    • 2001
  • This paper presents a novel three-phase current-fed Pulse Width Modulation converter with switched capacitor type resonant DC link commutation circuit operating PWM pattern strategy under a design consideration of low-pass filter, which can operate on the basis of the principle of zero current soft switching commutation. In the first place, the steady state operating principle of this converter with a new resonant DC link snubber circuit is described in connection with the equivalent operation circuit, together with the practical design procedure of the switched-capacitor type resonant DC link circuit is discussed from a theoretical viewpoint on the basis of a design example for high-power applications. The actively delayed time correction method to compensate distorted currents due to a relatively long resonant commutation time is newly implemented in the open loop control scheme so as to acquire the new optimum PWM pattern. Finally, the experiment of set-up in laboratory system of this converter is concretely demonstrated herein to confirm a zero current soft-switching commutation of this converter. The comparative evaluations between current-fed hard switching PWM and soft-switching PWM converters are carried out from a viewpoint of their PWM converter characteristics.

  • PDF

analysis of three-phase current type PWM converter using resonant DC Link snubber (공진 DC 링크 스너버를 이용한 3상 전류형 PWM 컨버터의 해석)

  • Lee, S.H.;Mun, S.P.;Suh, K.Y.;Kim, Y.M.;Kang, W.J.
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.55-59
    • /
    • 2002
  • This paper presents a novel three-phase current-fed Pulse Width Modulation converter with switched capacitor type resonant DC link commutation circuit operating PWM pattern strategy under a design consideration of low-pass filter, which can operate on the basis of the principle of zero current soft switching commutation. In the first place, the steady state operating principle of this converter with a new resonant DC link snubber circuit is described in connection with the equivalent operation circuit, together with the practical design procedure of the switched-capacitor type resonant DC link circuit is discussed from a theoretical viewpoint on the basis of a design example for high-power applications. The actively delayed time correction method to compensate distorted currents due to a relatively long resonant commutation time is newly implemented in the open loop control scheme so as to acquire the new optimum PWM pattern. Finally, the experiment of set-up in laboratory system of this converter is concretely demonstrated herein to confirm a zero current soft-switching commutation of this converter. The comparative evaluations between current -fed hard switching PWM and soft-switching PWM converters are carried out from a viewpoint of their PWM converter characteristics.

  • PDF

Utililty-Interfaced High-Frequency Flyback Transformer Linked Sinewave Pulse Modulated Inverter for a Small Scale Renewable Energy Conditioner

  • Chandhaket, Srawouth;Koninish, Yoshihiro;Nakaoka, Mutsou
    • Journal of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.112-123
    • /
    • 2002
  • This paper presents a novel prototype of the utility AC power interfaced soft-switching sinewave pulse modulated inverter using the high-frequency flyback for the small scale distributed renewable energy power conditioner. The proposed cricuit with a high-frequency isolation link has a funtion of electrical isolation, which is more cost-effective and reliable for the small-scale distributed renwal energy utilization system from a safety point of riew. The discontinuous conduction mode(DCM) operation of the high-frequency flyback transformer is adopted to establish a simple and low-cost circuit configuration and control scheme. For the simplicity, the circuit operating principle is described on the basis of the modified conventional full bridge inverter, whitch is the typical conventional high-frequency full-bridge inverter employing the high requency flyback transformer to eanble the effictive function of the electrical isolation. Than, the new circuit topology of the unility-interfaced soft-switching sinewave pulse modulated inverter using IGBTs is proposed. The proposed cricuit topology is additionally composed of the auxiliary power regenerating snubber cricuits, which are also mathematically analyzed for the parameter desigen settings. Finally, the performance of the propose inverter is evaluated on the basis of computer-aid simulation. It is noted that the sinewave pulse modulated output current of the inverter is synchronous to the AC main voltage.

Analysis of three-phase current type PWM converter using resonant DC Link snubber (공진 DC 링크 스너버를 이용한 3상 전류형 PWM 컨버터의 해석)

  • Kim, Young-Mun;Kang, Wook-Jung;Mun, Sang-Pil
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.52 no.2
    • /
    • pp.49-55
    • /
    • 2003
  • This paper presents a novel three-phase current-fed Pulse Width Modulation converter with switched capacitor type resonant DC link commutation circuit operating PWM pattern strategy under a design consideration of low-pass filter, which can operate on the basis of the principle of zero current soft switching commutation. In the first place, the steady state operating principle of this converter with a new resonant DC link snubber circuit is described in connection with the equivalent operation circuit, together with the practical design procedure of the switched-capacitor type resonant DC link circuit is discussed from a theoretical viewpoint on the basis of a design example for high-power applications. The actively delayed time correction method to compensate distorted currents due to a relatively long resonant commutation time is newly implemented in the open loop control scheme so as to acquire the new optimum PWM pattern. Finally, the experiment of set-up in laboratory system of this converter is concretely demonstrated herein to confirm a zero current soft-switching commutation of this converter. The comparative evaluations between current-fed hard switching PWM and soft-switching PWM converters are carried out from a viewpoint of their PWM converter characteristics.