• Title/Summary/Keyword: Snow-removal

Search Result 62, Processing Time 0.022 seconds

Analysis of Soil Changes in Vegetable LID Facilities (식생형 LID 시설의 내부 토양 변화 분석)

  • Lee, Seungjae;Yoon, Yeo-jin
    • Journal of Wetlands Research
    • /
    • v.24 no.3
    • /
    • pp.204-212
    • /
    • 2022
  • The LID technique began to be applied in Korea after 2009, and LID facilities are installed and operated for rainwater management in business districts such as the Ministry of Environment, the Ministry of Land, Infrastructure and Transport, and LH Corporation, public institutions, commercial land, housing, parks, and schools. However, looking at domestic cases, the application cases and operation periods are insufficient compared to those outside the country, so appropriate design standards and measures for operation and maintenance are insufficient. In particular, LID facilities constructed using LID techniques need to maintain the environment inside LID facilities because hydrological and environmental effects are expressed by material circulation and energy flow. The LID facility is designed with the treatment capacity planned for the water circulation target, and the proper maintenance, vegetation, and soil conditions are periodically identified, and the efficiency is maintained as much as possible. In other words, the soil created in LID is a very important design element because LID facilities are expected to have effects such as water pollution reduction, flood reduction, water resource acquisition, and temperature reduction while increasing water storage and penetration capacity through water circulation construction. In order to maintain and manage the functions of LID facilities accurately, the current state of the facilities and the cycle of replacement and maintenance should be accurately known through various quantitative data such as soil contamination, snow removal effects, and vegetation criteria. This study was conducted to investigate the current status of LID facilities installed in Korea from 2009 to 2020, and analyze soil changes through the continuity and current status of LID facilities applied over the past 10 years after collecting soil samples from the soil layer. Through analysis of Saturn, organic matter, hardness, water contents, pH, electrical conductivity, and salt, some vegetation-type LID facilities more than 5 to 7 years after construction showed results corresponding to the lower grade of landscape design. Facilities below the lower level can be recognized as a point of time when maintenance is necessary in a state that may cause problems in soil permeability and vegetation growth. Accordingly, it was found that LID facilities should be managed through soil replacement and replacement.

Studies on the Natural Distribution and Ecology of Ilex cornuta Lindley et Pax. in Korea (호랑가시나무의 천연분포(天然分布)와 군낙생태(群落生態)에 관한 연구(研究))

  • Lee, Jeong Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.62 no.1
    • /
    • pp.24-42
    • /
    • 1983
  • To develop Ilex cornuta which grow naturally in the southwest seaside district as new ornamental tree, the author chose I. cornuta growing in the four natural communities and those cultivated in Kwangju city as a sample, and investigated its ecology, morphology and characteristics. The results obtained was summarized as follows; 1) The natural distribution of I. cornuta marks $35^{\circ}$43'N and $126^{\circ}$44'E in the southwestern part of Korea and $33^{\circ}$20'N and $126^{\circ}$15'E in Jejoo island. This area has the following necessary conditions for Ilex cornuta: the annual average temperature is above $12^{\circ}C$, the coldness index below $-12.7^{\circ}C$, annual average relative humidity 75-80%, and the number of snow-covering days is 20-25 days, situated within 20km of from coastline and within, 100m above sea level and mainly at the foot of the mountain facing the southeast. 2) The vegetation in I. cornuta community can be divided that upper layer is composed of Pinus thunbergii and P. densiflora, middle layer of Eurya japonica var. montana, Ilex cornuta and Vaccinium bracteatum, and the ground vegetation is composed of Carex lanceolata and Arundinella hirta var. ciliare. The community has high species diversity which indicates it is at the stage of development. Although I. cornuta is a species of the southern type of temperate zone where coniferous tree or broad leaved, evergreen trees grow together, it occasionally grows in the subtropical zone. 3) Parent rock is gneiss or rhyolite etc., and soil is acidic (about pH 4.5-5.0) and the content of available phosphorus is low. 4) At maturity, the height growth averaged $10.48{\pm}0.23cm$ a year and the diameter growth 0.43 cm a year, and the annual ring was not clear. Mean leaf-number was 11.34. There are a significant positive correlation between twig-elongation and leaf-number. 5) One-year-old seedling grows up to 10.66 cm (max. 18.2 cm, min. 4.0 cm) in shoot-height, with its leaf number 12.1 (max. 18, min), its basal diameter 2.24 mm (max. 4.0 mm, min. 1.0 mm) and shows rhythmical growth in high temperature period. There were significant positive correlations between stalk-height and leaf-number, between stalk-height and basal-diameter, and between number and basal diameter. 6) The flowering time ranged from the end of April to the beginning of May, and the flower has tetra-merouscorella and corymb of yellowish green. It has a bisexual flower and dioecism with a sexual ratio 1:1. 7) The fruit, after fertilization, grows 0.87 cm long (0.61-1.31 cm) and 0.8 cm wide (0.62-1.05 cm) by the beginning of May. Fruits begin to turn red and continue to ripen until the end of October or the beginning of November and remain unfading until the end of following May. With the partial change in color of dark-brown at the beginning of the June fruits begin to fall, bur some remain even after three years. 8) The seed acquision ratio is 24.7% by weight, and the number of grains per fruit averages 3.9 and the seed weight per liter is 114.2 gram, while the average weight of 1,000 seeds is 24.56 grams. 9) Seeds after complete removal of sarcocarp, were buried under ground in a fixed temperature and humidity and they began to develop root in October, a year later and germinated in the next April. Under sunlight or drought, however, the dormant state may be continued.

  • PDF