• Title/Summary/Keyword: Snow load analysis

Search Result 53, Processing Time 0.025 seconds

Wind Pressure Analysis of Movable Shading Using CFD (CFD 해석을 이용한 가변 차양 장치의 풍압력 분석)

  • Kim, Gee-Chul;Lee, Joon-Ho;Baik, Yong-Kyu
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.2
    • /
    • pp.83-90
    • /
    • 2019
  • Most of the variable shading devices are installed outdoors, so they are greatly affected by structural safety due to external climate change, wind, rain, and snow. Especially, due to strong wind such as typhoons, safety problems may occur due to the dropout of the device. Therefore, it is necessary to secure the structural safety against the wind. Therefore, it is necessary to analyze the structural behavior of the windshield to evaluate the structural safety of the variable sunshade device. In this study, we analyze the wind pressure applied to the shading material according to the change of the length of the variable shading device, and apply it to the calculation of the wind load for the structural design of the variable shading device. The CFD (Computational Fluid Dynamic) analysis of the structure of the sample was used to analyze wind pressure magnitude and distribution. In order to estimate the wind pressure, the maximum wind loads of the static and negative pressures acting on the structure were analyzed from numerical simulation results.

Design of Optimum Section for Structural Members of Wide Span-Type and 2-Bay Venlo-Type Glass Green Houses (와이드 스팬형 및 2-Bay 벤로형 유리온실 구조부재의 최적단면 설계)

  • Park, Jong-Sup;Kim, Young-Hee;Seo, Kwang-Kye;Kim, Young-Sik
    • Journal of Bio-Environment Control
    • /
    • v.20 no.1
    • /
    • pp.50-57
    • /
    • 2011
  • This study investigates the structural safety of typical greenhouse to be utilized for developing plant factory. New long-span greenhouse systems were presented according to the results of structural analyses performed by finite-element program, ABAQUS. Reasonable values of design loads such as wind and snow loads in the Greenhouse Design Specifications (1995) were applied to check the new greenhouse systems. It was concluded that the new greenhouse systems were consistently safe enough to resist to both wind load and snow load. The new greenhouse system can be used to make simple and economic plant factory.

Effect Analysis of Spacer Stiffness and Interval on Galloping of Power Transmission Lines (스페이서 강성과 간격이 송전선 갤러핑에 미치는 영향분석)

  • Oh, Yun-Ji;Sohn, Jeong-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.52-58
    • /
    • 2019
  • Due to icing and snow, power transmission lines have asymmetric cross sections, and their motion becomes unstable. At this time, the vibration caused by the wind is called galloping. If galloping is continuous, short circuits or ground faults may occur. It is possible to prevent galloping by installing spacers between transmission lines. In this study, the transmission line is modeled as a mass-spring-damper system by using RecurDyn. To analyze the dynamic behavior of the transmission line, the damping coefficient is derived from the free vibration test of the transmission line and Rayleigh damping theory. The drag and lift coefficient for modeling the wind load are calculated from the flow analysis by using ANSYS Fluent. Galloping simulations according to spacer stiffness and interval are carried out. It is found that when the stiffness is 100 N/m and the interval around the support is dense, the galloping phenomenon is reduced the most.

Investigation and Analysis on the Surface Morphology of Roof-Top Photovoltaic System (평지붕 설치 태양광시스템의 표면형태 조사·분석)

  • Lee, Eung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.4
    • /
    • pp.57-65
    • /
    • 2016
  • Domestic photovoltaic system for roof-top is installed towards the south at an angle of 20 to 35 degrees and the shape of PV array is divided into two kinds; a plane shape and a curved shape. This paper aims to understand an actual condition of PV facility and strengths and weaknesses of support structure production and installation and to consider the best PV surface shape by analyzing theoretical logics of these two surface shapes and architectural perspective-based realistic case studies. This study targeted 98 facilities including common houses, public institutions and education institutions. In common houses, all of 59 PV facilities have a plane surface. In public institutions, 7 of 15 PV facilities have a curved array surface and 8 PV facilities have a plane surface. In education institutions, also, 14 of 24 PV facilities have a plane array surface and 10 PV facilities have a curved surface. Most of 98 facilities have a flat roof supporting shape. However, it was found that the curved shape wasn't positive for PV generation due to the change of radial density and it was at least 10 % more expensive to produce its structure. Also, domestic general large single-plate PV facilities have problems of harmony with buildings and wind load. Therefore, it is considered that for fixed-type roof-top PV, a plane PV array shape is good for optimum generation and economic efficiency and a parallel array structure on the roof surface is favorable to wind load and snow load without being a hindrance to the building facade.

Modal Testing of Arches for Plastic Film-Covered Greenhouses (비닐하우스 아치구조의 모달실험)

  • Cho, Soon-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.57-65
    • /
    • 2010
  • To determine the static buckling loads and evaluate the structural performance of slender steel pipe-arches such as for greenhouse structures, a series of modal tests using a fixed hammer and roving sensors was carried out, by providing no load, then a range of vertical loads, on an arch rib in several steps. More attention was given to an internal arch where vertical and horizontal auxiliary members are not placed, unlike an end arch. Modal parameters such as natural frequencies, mode shapes and damping ratios were extracted using more advanced system identification methods such as PolyMAX (Polyreference Least-Squares Complex Frequency Domain), and compared with those predicted by commercial FEA (Finite Element Analysis) software ANSYS for various conditions. A good correlation between them was achieved in an overall sense, however the reduction of natural frequencies due to the existence of preaxial loads was not apparent when the vertical load level was about up to 38% of its resistance. Some difficulties related to the field testing and parameter extraction for a very slender arch, as might arise from the influences of neighboring members, are carefully discussed.

Time-dependent analysis of cable trusses -Part II. Simulation-based reliability assessment

  • Kmet, S.;Tomko, M.;J., Brda
    • Structural Engineering and Mechanics
    • /
    • v.38 no.2
    • /
    • pp.171-193
    • /
    • 2011
  • One of the possible alternatives of simulation-based time-dependent reliability assessment of pre-stressed biconcave and biconvex cable trusses, the Monte Carlo method, is applied in this paper. The influence of an excessive deflection of cable truss (caused by creep of cables and rheologic changes) on its time-dependent serviceability is investigated. Attention is given to the definition of the basic random variables and their statistical functions (basic, mutually dependent random variables such as the pre-stressing forces of the bottom and top cable, structural geometry, the Young's modulus of elasticity of the cables, and the independent variables, such as permanent load, wind, snow and thermal actions). Then, the determination of the response of the cable truss to the loading effects, and the definition of the limiting values considering serviceability of the structure are performed. The potential of the method, using direct Monte Carlo technique for simulation-based time-dependent reliability assessment as a powerful tool, is emphasized. Results obtained by the First order reliability method (FORM) are compared with those obtained by the Monte Carlo simulation technique.

Wind load analysis of Structure for Folding Solar Power System (접이식 태양광 발전 구조물의 풍하중해석)

  • Son, Chang-Woo;Kim, Tae-Kyun;Seo, Tae-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.1-7
    • /
    • 2018
  • A folding solar power system is a stand-alone system and is a structure with solar panels attached. It consists of supporting parts and folding parts for ease of movement. While the efficiency of solar panels is also important to produce electricity by maximizing the power efficiency of solar panels, the most important thing is structure stability. The folding solar power structure intended to be developed in this study is a collapsible structure that is easy to move and install into systems that can produce electricity from grid to independent. Since these structures are installed outdoors, wind loads, snow cover, etc. In this paper, the wind loads most affected by the folding solar power generation structure were obtained using the MeshFree Finite Element Method. MeshFree is a program that makes it easier for users to interpret by simplifying the mesh tasks required by an existing analysis. The analysis showed that the greater the angle of inclination of the wind to the ground, the greater the wind load. In addition, reliability was ensured by wind load testing.

A Study on the Evaluation of Probable Snowfall Depth in Korea (우리나라의 확률적설량 산정에 관한 연구)

  • Lee, Jae-Joon;Jung, Young-Hoon;Lee, Sang-Won
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.2 s.25
    • /
    • pp.53-63
    • /
    • 2007
  • This study is to evaluate the probable snowfall depth by the point frequency analysis and to draw the map of probable snowfall depth in Korea. The 14 probability distributions which has been widely used in hydrologic frequency analysis are applied to the annual maximum depth of snowfall data. The parameters of each probability distribution are estimated by method of moments, maximum likelihood method and method of probability weighted moments. The estimated parameters were checked by parameter validity conditions of each assumed probability distribution. Four tests that are $X^2-test$, Kolmogorov-Smirnov test, Cramer von Mises test and probability plot correlation coefficient test are used in this study to determine the goodness of fit of the distributions. Mostly the 2-parameter gamma distribution was determined as appropriate distribution for the annual maximum new snowfall depth. The probable snowfall depth were obtained from appropriate distribution for the selected return periods and the maps of probable snowfall depth were presented. It will be useful to specify the snowfall load for the design of agricultural facilities such as vinyl house and cattle shed.

A Case Study on Meteorological Analysis of Freezing Rain and Black Ice Formation on the Load at Winter (겨울철 노면에 발생하는 어는 비와 블랙아이스의 기상학적 분석에 관한 사례 연구)

  • Park, Geun-Yeong;Lee, Soon-Hwan;Kim, Eun-Ji;Yun, Byeong Yeong
    • Journal of Environmental Science International
    • /
    • v.26 no.7
    • /
    • pp.827-836
    • /
    • 2017
  • Freezing rain is a phenomenon when precipitation falls as a liquid rain drop, but freezes when it comes into contact with surfaces or objects. In this study, we investigated the predictability of freezing rain and its characteristics, which are strongly related with the occurrence of black ice using synoptic scale meteorological observation data. Two different cases occurred at 2012 were analyzed and in the presented cases, freezing rain often occurs in the low-level low pressure with the warm front. The warm front due to the lower cyclone make suitable environment in which snow falling from the upper layer can change into supercooled water. The $0^{\circ}C$ temperature line to generate supercooling water is located at an altitude of 850 hPa in the vertical temperature distribution. And the ground temperature remained below zero, as is commonly known as a condition for black ice formation. It is confirmed that the formation rate of freezing rain is higher when the thickness after 1000-850 hPa is 1290-1310 m and the thickness of 850-700 hPa layer is larger than 1540 m in both cases. It can also be used to predict and estimate the generation of freezing rain by detecting and analyzing bright bands in radar observation.

Analysis of Structural Types and Design Factors for Fruit Tree Greenhouses (과수재배용 온실의 구조유형과 설계요소 분석)

  • Nam, Sang-Woon;Ko, Gi-Hyuk
    • Journal of Bio-Environment Control
    • /
    • v.22 no.1
    • /
    • pp.27-33
    • /
    • 2013
  • In order to provide basic data for the development of a controlled environment cultivation system and standardization of the structures, structural status and improvement methods were investigated for the fruit tree greenhouses of grape, pear, and peach. The greenhouses for citrus and grape cultivation are increasing while pear and persimmon greenhouses are gradually decreasing due to the advance of storage facilities. In the future, greenhouse cultivation will expand for the fruit trees which are more effective in cultivation under rain shelter and are low in storage capability. Fruit tree greenhouses were mostly complying with standards of farm supply type models except for a pear greenhouse and a large single-span peach greenhouse. It showed that there was no greenhouse specialized in each species of fruit tree. Frame members of the fruit tree greenhouses were mostly complying with standards of the farm supply type model or the disaster tolerance type model published by MIFAFF and RDA. In most cases, the concrete foundations were used. The pear greenhouse built with the column of larger cross section than the disaster tolerance type. The pear greenhouse had also a special type of foundation with the steel plate welded at the bottom of columns and buried in the ground. As the results of the structural safety analysis of the fruit tree greenhouses, the grape greenhouses in Gimcheon and Cheonan and the peach greenhouses in Namwon and Cheonan appeared to be vulnerable for snow load whereas the peach greenhouse in Namwon was not safe enough to withstand wind load. The peach greenhouse converted from a vegetable growing facility turned out to be unsafe for both snow and wind loads. Considering the shape, height and planting space of fruit tree, the appropriate size of greenhouses was suggested that the grape greenhouse be 7.0~8.0 m wide and 2.5~2.8 m high for eaves, while 6.0~7.0 m wide and 3.0~3.3 m of eaves height for the pear and peach greenhouses.