• 제목/요약/키워드: Snow depth prediction

검색결과 15건 처리시간 0.03초

겨울철 동아시아 지역 기온의 계절 예측에 눈깊이 초기화가 미치는 영향 (Impact of Snow Depth Initialization on Seasonal Prediction of Surface Air Temperature over East Asia for Winter Season)

  • 우성호;정지훈;김백민;김성중
    • 대기
    • /
    • 제22권1호
    • /
    • pp.117-128
    • /
    • 2012
  • Does snow depth initialization have a quantitative impact on sub-seasonal to seasonal prediction skill? To answer this question, a snow depth initialization technique for seasonal forecast system has been implemented and the impact of the initialization on the seasonal forecast of surface air temperature during the wintertime is examined. Since the snow depth observation can not be directly used in the model simulation due to the large systematic bias and much smaller model variability, an anomaly rescaling method to the snow depth initialization is applied. Snow depth in the model is initialized by adding a rescaled snow depth observation anomaly to the model snow depth climatology. A suite of seasonal forecast is performed for each year in recent 12 years (1999-2010) with and without the snow depth initialization to evaluate the performance of the developed technique. The results show that the seasonal forecast of surface air temperature over East Asian region sensitively depends on the initial snow depth anomaly over the region. However, the sensitivity shows large differences for different timing of the initialization and forecast lead time. Especially, the snow depth anomaly initialized in the late winter (Mar. 1) is the most effective in modulating the surface air temperature anomaly after one month. The real predictability gained by the snow depth initialization is also examined from the comparison with observation. The gain of the real predictability is generally small except for the forecasting experiment in the early winter (Nov. 1), which shows some skillful forecasts. Implications of these results and future directions for further development are discussed.

Field measurement study on snow accumulation process around a cube during snowdrift

  • Wenyong Ma;Sai Li;Xuanyi Zhou;Yuanchun Sun;Zihan Cui;Ziqi Tang
    • Wind and Structures
    • /
    • 제37권1호
    • /
    • pp.25-38
    • /
    • 2023
  • Due to the complexity and difficulty in meeting the multiphase flow complexity, similarity, and multiscale characteristics, the mechanism of snow drift is so complicated that the snow deposition prediction is still inaccurate and needs to be far improved. Meanwhile, the validation of prediction methods is also limited due to a lack of field-measured data about snow deposition. To this end, a field measurement activity about snow deposition around a cube with time was carried out, and the snow accumulation process was measured under blowing snow conditions in northwest China. The maximum snow depth, snow profile, and variation in snow depth around the cube were discussed and analyzed. The measured results indicated three stages of snow accumulation around the cube. First, snow is deposited in windward, lateral and leeward regions, and then the snow depth in windward and lateral regions increases. Secondly, when the snow in the windward region reaches its maximum, the downwash flow erodes the snow against the front wall. Meanwhile, snow range and depth in lateral regions have a significant increase. Thirdly, a narrow road in the leeward region is formed with the increase in snow range and depth, which results in higher wind speed and reforming snow deposition there. The field measurement study in this paper not only furthers understanding of the snow accumulation process instead of final deposition under complex conditions but also provides an important benchmark for validating prediction methods.

베이지안 딥러닝 기법을 이용한 확률적 적설심 예측 모델 개발 (Development of a Stochastic Snow Depth Prediction Model Using a Bayesian Deep Learning Method)

  • 정영준;이상익;이종혁;서병훈;김동수;서예진;최원
    • 한국농공학회논문집
    • /
    • 제64권6호
    • /
    • pp.35-41
    • /
    • 2022
  • Heavy snow damage can be prevented in advance with an appropriate security system. To develop the security system, we developed a model that predicts snow depth after a few hours when the snow depth is observed, and utilized it to calculate a failure probability with various types of greenhouses and observed snow depth data. We compared the Markov chain model and Bayesian long short-term memory models with varying input data. Markov chain model showed the worst performance, and the models that used only past snow depth data outperformed the models that used other weather data with snow depth (temperature, humidity, wind speed). Also, the models that utilized 1-hour past data outperformed the models that utilized 3-hour data and 6-hour data. Finally, the Bayesian LSTM model that uses 1-hour snow depth data was selected to predict snow depth. We compared the selected model and the shifting method, which uses present data as future data without prediction, and the model outperformed the shifting method when predicting data after 11-24 hours.

TIGGE 자료를 이용한 2012년 12월 28일 한반도 강설사례 예측성 연구 (Predictability Study of Snowfall Case over South Korea Using TIGGE Data on 28 December 2012)

  • 이상민;한상은;원혜영;하종철;이정순;심재관;이용희
    • 대기
    • /
    • 제24권1호
    • /
    • pp.1-15
    • /
    • 2014
  • This study compared ensemble mean and probability forecasts of snow depth amount associated with winter storm over South Korea on 28 December 2012 at five operational forecast centers (CMA, ECMWF, NCEP, KMA, and UMKO). And cause of difference in predicted snow depth at each Ensemble Prediction System (EPS) was investigated by using THe Observing system Research and Predictability EXperiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) data. This snowfall event occurred due to low pressure passing through South Sea of Korea. Amount of 6 hr accumulated snow depth was more than 10 cm over southern region of South Korea In this case study, ECMWF showed best prediction skill for the spatio-temporal distribution of snow depth. At first, ECMWF EPS has been consistently enhancing the indications present in ensemble mean snow depth forecasts from 7-day lead time. Secondly, its ensemble probabilities in excess of 2~5 cm/6 hour have been coincided with observation frequencies. And this snowfall case could be predicted from 5-day lead time by using 10-day lag ensemble mean 6 hr accumulated snow depth distribution. In addition, the cause of good performances at ECMWF EPS in predicted snow depth amounts was due to outstanding prediction ability of forming inversion layer with below $0^{\circ}C$ temperature in low level (below 850 hPa) according to $35^{\circ}N$ at 1-day lead time.

빙권요소를 활용한 겨울철 역학 계절예측 시스템의 개발 및 검증 (Development and Assessment of Dynamical Seasonal Forecast System Using the Cryospheric Variables)

  • 심태현;정지훈;옥정;정현숙;김백민
    • 대기
    • /
    • 제25권1호
    • /
    • pp.155-167
    • /
    • 2015
  • A dynamical seasonal prediction system for boreal winter utilizing cryospheric information was developed. Using the Community Atmospheric Model, version3, (CAM3) as a modeling system, newly developed snow depth initialization method and sea ice concentration treatment were implemented to the seasonal prediction system. Daily snow depth analysis field was scaled in order to prevent climate drift problem before initializing model's snow fields and distributed to the model snow-depth layers. To maximize predictability gain from land surface, we applied one-month-long training procedure to the prediction system, which adjusts soil moisture and soil temperature to the imposed snow depth. The sea ice concentration over the Arctic region for prediction period was prescribed with an anomaly-persistent method that considers seasonality of sea ice. Ensemble hindcast experiments starting at 1st of November for the period 1999~2000 were performed and the predictability gain from the imposed cryospheric informations were tested. Large potential predictability gain from the snow information was obtained over large part of high-latitude and of mid-latitude land as a result of strengthened land-atmosphere interaction in the modeling system. Large-scale atmospheric circulation responses associated with the sea ice concentration anomalies were main contributor to the predictability gain.

가을철 빙권 조건을 활용한 겨울철 역학 계절 예측시스템의 개발 (Development of Dynamical Seasonal Prediction System for Northern Winter using the Cryospheric Condition of Late Autumn)

  • 심태현;정지훈;김백민;김성중;김현경
    • 대기
    • /
    • 제23권1호
    • /
    • pp.73-83
    • /
    • 2013
  • In recent several years, East Asia, Europe and North America have suffered successive cold winters and a number of historical records on the extreme weathers are replaced with new record-breaking cold events. As a possible explanation, several studies suggested that cryospheric conditions of Northern Hemisphere (NH), i.e. Arctic sea-ice and snow cover over northern part of major continents, are changing significantly and now play an active role for modulating midlatitude atmospheric circulation patterns that could bring cold winters for some regions in midlatitude. In this study, a dynamical seasonal prediction system for NH winter is newly developed using the snow depth initialization technique and statistically predicted sea-ice boundary condition. Since the snow depth shows largest variability in October, entire period of October has been utilized as a training period for the land surface initialization and model land surface during the period is continuously forced by the observed daily atmospheric conditions and snow depths. A simple persistent anomaly decaying toward an averaged sea-ice condition has been used for the statistical prediction of sea-ice boundary conditions. The constructed dynamical prediction system has been tested for winter 2012/13 starting at November 1 using 16 different initial conditions and the results are discussed. Implications and a future direction for further development are also described.

기상청 관측 자료와 눈 밀도 공식을 이용한 적설하중의 근사 추정 (An Approximate Estimation of Snow Weight Using KMA Weather Station Data and Snow Density Formulae)

  • 조지영;이승재;최원
    • 한국농림기상학회지
    • /
    • 제22권2호
    • /
    • pp.92-101
    • /
    • 2020
  • 대설로 인한 시설 농가의 피해를 예방하고 경감시키기 위해서는 기존의 적설 깊이와 더불어 적설하중에 대한 예보가 추가로 제공되어야 한다. 본 연구에서는 눈의 밀도 및 적설하중과 관련하여 해외 연구에서 사용하고 있는 이론과 공식들을 검토하고, 이를 국내에서 장기간의 농업기상관측 이력을 가지고 있는 수원에 적용하여 얻는 적설하중 결과를 소개하였다. 지난 30년(1988~2017) 간 국내 94개 기상대와 무인자동기상 관측소에서 측정된 적설(3시간 신적설, 최심신적설, 최심적설) 깊이 자료를 이용하여 우리나라 대설주의보와 대설경보에 해당하는 적설 깊이의 빈도를 살펴보았다. 우리나라 권역별 적설빈도 공간분포를 보면 대설주의보에 해당하는 신적설은 전북지역에서 많이 발생했고, 대설경보에 해당하는 신적설은 경북과 강원지역에서 많이 나타났다. 기록적인 대설은 경북과 강원지역에서 나타났으나, 최근의 겨울철 대설 피해는 경기, 경북, 전남에서 나타났다. 즉 적설 깊이가 깊더라도 적설하중이 무겁지 않다면 큰 피해가 발생하지 않는 것을 확인할 수 있었다. 수원지역의 적설하중을 추정한 결과를 보면 공식들에 따라 다양한 값들과 특징을 보였다. 대부분 적설 깊이가 깊을 때 적설하중이 무겁게 나타났지만 최대적설하중과 최심적설이 반드시 같은 날에 발생하지는 않았다. 이러한 수원지역의 결과는 다른 지역에서의 적설하중을 추정하는데 도움을 줄 수 있고, 온실구조 설계 기준의 표준 확립과 적설하중 예보를 통해 농가의 경제적 손실을 줄이는데 기여할 것이다.

포토카플러를 이용한 눈(snow)높이 감지 강설 계측시스템 (Snow-Falling Measurement System monitoring the Height of Snow using the Photo Coupler)

  • 최만용;박해원;박정학;김원태
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.517-520
    • /
    • 2003
  • The snow-fatting measurement system including the snow sensor applying the photo-coupler is investigated in this study and using this snow sensor the height of snow fallen is measured. To measure the snow depth, five photo sensors are arranged with 5 mm distance. The snow-falling measurement system, which is measuring the motor revolution controlled with stepping motor, is mounted above the snow surface. From this work, it is feasible to measure quantitatively the snow on real time. Its software implements a proven method to achieve valid measurements also under difficult conditions as future study. In cases where the snow sensor is applieded to the prediction of snow in the meteorological observation system and the snow removing system, it is recommend the GRS-Option in order to improve the quality of snow measurements for better compensation.

  • PDF

CFD-DEM modeling of snowdrifts on stepped flat roofs

  • Zhao, Lei;Yu, Zhixiang;Zhu, Fu;Qi, Xin;Zhao, Shichun
    • Wind and Structures
    • /
    • 제23권6호
    • /
    • pp.523-542
    • /
    • 2016
  • Snowdrift formation on roofs should be considered in snowy and windy areas to ensure the safety of buildings. Presently, the prediction of snowdrifts on roofs relies heavily on field measurements, wind tunnel tests and numerical simulations. In this paper, a new snowdrift modeling method by using CFD (Computational Fluid Dynamics) coupled with DEM (Discrete Element Method) is presented, including material parameters and particle size, collision parameters, particle numbers and input modes, boundary conditions of CFD, simulation time and inlet velocity, and coupling calculation process. Not only is the two-way coupling between wind and snow particles which includes the transient changes in snow surface topography, but also the cohesion and collision between snow particles are taken into account. The numerical method is applied to simulate the snowdrift on a typical stepped flat roof. The feasibility of using coupled CFD with DEM to study snowdrift is verified by comparing the simulation results with field measurement results on the snow depth distribution of the lower roof.

한반도 적설심 재분석자료의 오차 및 불확실성 평가 (Evaluation of bias and uncertainty in snow depth reanalysis data over South Korea)

  • 전현호;이슬찬;이양원;김진수;최민하
    • 한국수자원학회논문집
    • /
    • 제56권9호
    • /
    • pp.543-551
    • /
    • 2023
  • 눈은 기후계와 지표면 에너지 평형에 영향을 끼치는 필수 기후 인자이며, 겨울 동안 저장한 고체 형태의 물을 봄에 유출, 지하수 함양 등에 제공하여 물 평형에도 결정적인 역할을 한다. 본 연구에서는 Local Data Assimilation and Prediction System (LDAPS), Modern.-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), ERA5-Land 적설심 자료의 통계 분석을 통해 남한에서의 활용 가능성을 평가하였다. 기상청에서 제공하는 Automated Synoptic Observing System (ASOS) 지상관측자료와 재분석자료간의 통계분석 결과, LDAPS와 ERA5-Land의 상관계수가 0.69 이상으로 상관성이 높게 나타났으나 LDAPS는 RMSE가 0.79 m로 오차가 크게 나타났다. MERRA-2의 경우 일부 기간 동안 일정한 값이 연속적으로 산출되어 자료간 증감 추이를 적절하게 모의하지 못하였기에 상관계수가 0.17로 상관성이 낮게 나타났다. LDAPS와 ASOS의 지점별 통계분석 결과 상대적으로 평균 강설량이 높게 나타나는 강원도 인근에서 성능이 높게 나타났으며, 평균 강설량이 낮게 나타나는 남부 지역에서 성능이 낮게 나타났다. 마지막으로, triple collocation (TC)를 통해 본 연구에서 활용된 4개의 독립적인 적설심자료 간의 오차 분산을 산정하였으며, 나아가 가중치 산정을 통해 융합된 적설심 자료를 생산하였다. 재분석자료는 LDAPS, MERRA-2, ERA5-Land 순으로 오차 분산이 높게 나타났으며, LDAPS의 경우 오차 분산이 높게 산정되어 가중치가 낮게 산정되었다. 또한, ERA5-Land 적설심 자료의 공간 분포가 변동성이 적게 나타나, TC로 융합된 적설심 자료는 저해상도 영상인 MERRA-2와 유사한 공간 분포가 나타났다. 자료의 상관성, 오차, 불확실성을 고려하였을 때, ERA5-Land 자료가 남한을 대상으로 적설 관련 분석을 하기 적합한 것으로 판단된다. 또한, 타 자료와 경향성은 높게 나타나나 과대 산정되는 경향이 있는 LDAPS 자료를 대상으로 적절한 보정이 수행될 시, 지역 및 기후적 다양성을 높은 해상도로 표출할 수 있는 LDAPS 자료를 적극적으로 활용할 수 있을 것으로 기대된다.