• Title/Summary/Keyword: Snake proteinase

Search Result 6, Processing Time 0.023 seconds

Inhibitory Substance Produced by Aspergillus sp. on the Snake Venom Proteinase - Isolation of Microorganism and Biological Activities of the Inhibitor - (Aspergillus 속 균주가 생성되는 사독 Proteinase에 대한 저해물질 - 균의 분리 및 저해물질의 생물학적 작용상 -)

  • Hyun, Nam-Joo;Seu, Jung-Hwn
    • Microbiology and Biotechnology Letters
    • /
    • v.15 no.2
    • /
    • pp.129-134
    • /
    • 1987
  • Aspergillus sp. (MK-24) producing a biological active substance that inhibited the venom proteinase activity was isolated from soil. The substance also inhibited the activity of trypsin and coagulation of blood, but did not inhibit papain, $\alpha$-chymotrypsin and pepsin. The substance was partially purified from culture filtrate by precipitaion with acetone, and by chromatography of DEAE-Sepadex A-50 column and Amberlite IRC-50 ion exchange. The inhibitory substance was stable in the wide pH range from 2.0 to 12.0 at 37$^{\circ}C$, but not stable at $65^{\circ}C$ in the alkaline pH. Only 12% of the activity was decreased by the heat treatment at 10$0^{\circ}C$ for two hours. The inhibition on venom proteinase (Agkistrodon bromohoffi brevicaudus) was a mixed type. The inhibitory activity depended on the preincubation time and completely depressed by cupric, zinc and cobalt ions. The inhibition on the venom proteinase was appeared strongly on casein but not on ovalbumin or hemoglobin as a substrate.

  • PDF

Inhibitory Substance Produced by Aspergillus sp. on the Snake Proteinase - Culture Conditions for the Production of Inhibitor - (Aspergillus 속 균주가 생성하는 사독 proteinase에 대한 저해물질- 저해물질의 생산조건 -)

  • Nam Joo Hyun;Jung Hwn Seu
    • Microbiology and Biotechnology Letters
    • /
    • v.15 no.2
    • /
    • pp.135-139
    • /
    • 1987
  • Aspergillus sp. MK-24 was cultured at 3$0^{\circ}C$ in the medium consisting of 2% glucose, 0.2% NaNO$_3$, 0.02% $K_2$HPO$_4$, 0.02% MgSO$_4$ 7$H_2O$, 0.02% KCl, and at initial pH of 5.0. The production of the inhibitor on venom proteinase reached to the maximum in 7 days. Sodium nitrate or potassium nitrate as a nitrogen source was favorable. The production of inhibitor was not affected by the addition of most of the inorganic salt used but depressed by lead, zinc, cobalt, mercuric or silver salts.

  • PDF

Isolation from Gloydius blomhoffii siniticus Venom of a Fibrin(ogen)olytic Enzyme Consisting of Two Heterogenous Polypeptides

  • Choi, Suk-Ho;Lee, Seung-Bae
    • Journal of Pharmacopuncture
    • /
    • v.16 no.2
    • /
    • pp.46-54
    • /
    • 2013
  • Objective: This study was undertaken to isolate a fibrin(ogen)olytic enzyme from the snake venom of Gloydius blomhoffii siniticus and to investigate the enzymatic characteristics and hemorrhagic activity of the isolated enzyme as a potential pharmacopuncture agent. Methods: The fibrinolytic enzyme was isolated by using chromatography, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and fibrin plate assay. The characteristics of the enzyme were determined by using fibrin plate assay, protein hydrolysis analysis, and hemorrhage assay. Its amino acid composition was determined. Results: The fibrin(ogen)olytic enzyme with the molecular weight of 27 kDa (FE-27kDa) isolated from G. b. siniticus venom consisted of two heterogenous disulfide bond-linked polypeptides with the molecular weights of 15 kDa and 18 kDa. When more than $20{\mu}g$ of FE-27kDa was applied on the fibrin plate, fibrinolysis zone was formed as indicating its fibrinolytic activity. The fibrinolytic activity was inhibited completely by phenylmethanesulfonylfluoride (PMSF) and ethylenediaminetetraacetic acid (EDTA) and partially by thiothreitol and cysteine. Metal ions such as $Hg^{2+}$ and $Fe^{2+}$ inhibited the fibrinolytic activity completely, but $Mn^{2+}$ did not. FE-27kDa preferentially hydrolyzed ${\alpha}$-chain of fibrinogen and slowly hydrolyzed ${\beta}$-chain, but did not hydrolyze ${\gamma}$-chain. High-molecular-weight polypeptides of gelatin were hydrolyzed partially into polypeptides with molecular weights of more than 45 kDa. A dosage of more than $10{\mu}g$ of FE-27kDa per mouse was required to induce hemorrhage beneath the skin. Conclusion: FE-27kDa was a serine proteinase consisting of two heterogeneous polypeptides, hydrolyzed fibrin, fibrinogen, and gelatin, and caused hemorrhage beneath the skin of mouse. This study suggests that the potential of FE-27kDa as pharmacopuncture agent should be limited due to low fibrinolytic activity and a possible side effect of hemorrhage.

Isolation and charaterization of a microbial antihemorrhagic substance on snake venom (사독의 출혈인자에 작용하는 미생물성 유출혈물질)

  • 서정훈
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.2
    • /
    • pp.145-153
    • /
    • 1986
  • For the inactivation of venoms, the chemical methods are generally applied. In the chemical method many works have been carried out with the chemical reagents and immunological antiserums. However, all inhibitory effect of these chemicals acting on snake venomes may well be due not to the specific, but to the nonspecific inhibitory action. Therefore, it is necessary to separate venom into its compositional active proteins and develop specific inhibitor which acts on the each protein. Until now, there have not been any reports about the substance which acts on snake venom as a specific inhibitor. Recently in 1979, we had actually isolated a specific venom inhibitor(ISV) which has a strong inhibitory activity against the proteinase of snake venom of Colubridae. In our experiments described here, a strain of Aspergillus sp., isolated from soil, was able to produce a biological active substance. The partial crystallized substance had a strong inhibitory activity against hemorrhagic action of snake venom of Colubridae. For the inhibitory action of the sample on the lethality of venom, the substance prevented completely the lethal action of the hemorrhagic factor when they were treated with enough amount of the substance. The edema factor of whole venom of Agristrodon bromohoffi brevicaudus was completely inhibited, but those of HR-I and HR-II of Trimeresurus flavoviridis venom were inhibited about 50%, when they were treated with the substance of half amount of venom. On the other hand, from the result of subcutaneous hemorrhage in a rabbit, it was concluded that two kinds of antihemorrhagic substance might be produced by the strain used in this work.

  • PDF

Development of a thrombolytic agent from Korean snake venums (한국 독사독으로부터 혈전 용해제 개발에 관한 연구)

  • Lee, Moon-Han;Kim, Byung-Jae;Lee, Hang;Ryu, Pan-Dong;Cho, Myung-Haeng;Lee, Hye-Sook;Kim, Jong-Ho;Chae, Chang-Soo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.114-114
    • /
    • 1995
  • 이 연구에서는 혈전증 치료에 사용되는 혈전 응해제를 국내 독사독으로부터 개발하기 위한 실험을 실시하였다. 그 내용을 요약하면 다음과 같다. 국내에 서식하는 독사인 Agkistrodon blomoffi brevicaudus, Agkistrodon caliginosus와 Agkistrodon saxatilis에서 각각 사독을 채취하여 fibrin plate 방법으로 fibrin 분해능을 조사하여 Agkistrodon blomoffi brevicaudus의 독이 분해능이 가장 우수함을 밝혔다. 이와 같은 사실에 기초하여 A. blomoffi brevicaudus의 독으로부터 p-Aminobenzamidine affinity chromatography와 DEAE ion-exchange chromatography를 이용하여 분자량이 50.8 kDa인 황성 단백질을 정제하였다. 위에서와 같은 방법으로 정제한 단백질은 fibrin 분해능이 우수하고 fibrinogen의 ${\gamma}$ chain은 분해하지 않으나 B$\beta$ chain을 $A\alpha$ chain에 비하여 보다 선택적으로 분해하는 단백분해 효소임을 증명하였다. 이 정제 효소의 Fibrin에 대한 분해능은 266$\mu\textrm{g}$/${\mu}\ell$의 농도에서 Plasmin 1.0 unit (=3.0 WHO unit)보다 높게 나타났다. 정제된 효소는 chromogenic substrate인 N-Benzoyl-Phe-Val-Arg-pNA와 N-p-Tosyl- Gly-Pro-Arg-pNA의 arginine carboxyl side를 분해하고 pH 7.5에서 최대 활성을 보이며, Vmax는 5.46 umo1/1ㆍmin이고, Km 값은 0.20mM이며, 그리고 Cu$^{2+}$, $Zn^{2+}$, soybean trypsin inhibtor에 의해 25~50% 정도, serine proteinase inhibitor인 phenylmethylsulfonyl floride에 의해 80%정도 활성이 억제되는 특성이 있음을 규명하였다.

  • PDF

Inhibitory Substance on the Snake Venoms Produced by Penicillium sp. (사독의 조해물질에 관한 연구)

  • Seu, Jung-Hwn;Yi, Dong-Heui
    • Microbiology and Biotechnology Letters
    • /
    • v.7 no.2
    • /
    • pp.75-89
    • /
    • 1979
  • One strain of Penicillium sp. (175-66-B), isolated from soil, was able to produce a substance that has a strong inibition activity against the Agkistrodon and Trimeresurus venoms. In this experiment, the chemical and biological properties of the sample were investigated. As an inhibitory substance, it was effective to the proteinase, hemorrhagic and lethal factors of Agkistrodon and Trimeresurus venoms, and also effective to several fractions of the proteinases and hemorrhagic factors of Agkistrodon halys blomhoffi venom. Moreover, in the addition of prednisotone, it was more effective for the cure of the mouse envenomated with the venom amount of two fold of MLD$_{100}$. This substance was very stable to the acid, alkali and heat. Its melting point was high enough to sublime at 222$^{\circ}C$ without any decomposition. This sample was easily dissolved only in hot water, but not in several organic solvents except for a little dissolution in elate. It did not have the chelating activity. It had very strong specificity to the snake venoms. but its activity was depressed by the addition of zinc or cupric salts. This sample had no acute toxicity to the mouse. Its chemical formula was $C_{16}$ $H_{12}$$N_2$ $O_{10}$ with the molecular weight of about 392. It has two epoxy groups and four carboxyl radicals, but amino, nitrite and nitrate radicals, unsaturated bonds and aromatic ring were not detected. Theuchemical configuration of this sample was suggested to be;

  • PDF