• Title/Summary/Keyword: SnO$_2$

검색결과 1,493건 처리시간 0.033초

열산화법으로 형성한 $Pt-SnO_{2-x}$ 박막소자의 CO 가스 감지특성 (CO Sensing Characteristics of $Pt-SnO_{2-x}$ Thin Film Devices Fabricated by Thermal Oxidation)

  • 심창현;박효덕;이재현;이덕동
    • 센서학회지
    • /
    • 제1권2호
    • /
    • pp.117-123
    • /
    • 1992
  • 적층구조의 Pt-Sn 박막을 히터 위에서 열산화하여 $Pt-SnO_{2-x}$ 박막형 CO 가스감지소자를 제조하였다. 열증착법으로 증착된 Sn의 두께는 $4000{\AA}$이었으며 그 위에 D.C. sputtering법으로 증착된 Pt의 두께는 $14{\AA}{\sim}71{\AA}$ 이었다. XRD 분석에서 $Pt-SnO_{2-x}$ 박막은 $200{\AA}$ 정도의 입경과 주방향성이 (110)인 $(SnO_{2}){\cdot}6T$ 결정상을 보였다. $Pt-SnO_{2-x}$ 박막소자(Pt 두께 : $43{\AA}$)는 6000 ppm의 CO에 대해 80% 정도의 감도와 CO에 대해 높은 선택도를 나타내었다. 그리고 CO에 고감도를 갖는 $Pt-SnO_{2-x}$ 박막소자의 열산화 온도와 동작온도가 각각 $500^{\circ}C$$200^{\circ}C$이었다.

  • PDF

${AI_2}{O_3}$/ AI 및 ${SnO_2}-{AI_2}{O_3}$/AI박막습도 센서에 관한 연구 (A Study on the ${AI_2}{O_3}$/ and ${SnO_2}-{AI_2}{O_3}$/AI Thin Film Humidity Sensors)

  • 전춘생
    • 한국재료학회지
    • /
    • 제4권2호
    • /
    • pp.159-165
    • /
    • 1994
  • 순수한 알루미늄을 양극산화한 $AI_2O_3/AI$ 소자 및 그 위에$SnO_2$를 증착, 소자를 제작하여 그들의 전기적인 특성을 여러 습도 분위기 중에서 조사하였다. 단위습도당의 표면저항 변화는 $AI_2O_3/AI$ 소자에서는 $1.40 \times 10^{-2}\Omega$ /RH이었다. 두 소자는 습도에 따른 표면저항 변화중에서 hysteresis현상을 나타내고 있지만, $SnO_2-AI_2O_3/Al$ 소자쪽이 더 작은 hysteresis현상을 나타내었다. $SnO_2-AI_2O_3/Al$ 소자에 있어서 표면저항에 대한 온도의존성은 40-$60^{\circ}C$에서 $2.50 \times 10^{-2} \Omega /^{\circ}C$인것에비해 0~$20^{\circ}C$에서는 $0.56 \times 10^{-2} \Omega /^{\circ}C$와 같이 적기 때문에 $SnO_2-AI_2O_3/Al$ 소자는 실온영역에서 습도센서로 쓸 수 있다고 결론할 수 있다.

  • PDF

Determination of Ascorbic Acid, Acetaminophen, and Caffeine in Urine, Blood Serum by Electrochemical Sensor Based on ZnO-Zn2SnO4-SnO2 Nanocomposite and Graphene

  • Nikpanje, Elham;Bahmaei, Manochehr;Sharif, Amirabdolah Mehrdad
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권2호
    • /
    • pp.173-187
    • /
    • 2021
  • In the present research, a simple electrochemical sensor based on a carbon paste electrode (CPE) modified with ZnO-Zn2SnO4-SnO2 and graphene (ZnO-Zn2SnO4-SnO2/Gr/CPE) was developed for the direct, simultaneous and individual electrochemical measurement of Acetaminophen (AC), Caffeine (Caf) and Ascorbic acid (AA). The synthesized nano-materials were investigated using scanning electron microscopy, X-ray Diffraction, Fourier-transform infrared spectroscopy, and electrochemical impedance spectroscopy techniques. Cyclic voltammetry and differential pulse voltammetry were applied for electrochemical investigation ZnO-Zn2SnO4-SnO2/Gr/CPE, and the impact of scan rate and the concentration of H+ on the electrode's responses were investigated. The voltammograms showed a linear relationship between the response of the electrode for individual oxidation of AA, AC and, Caf in the range of 0.021-120, 0.018-85.3, and 0.02-97.51 μM with the detection limit of 8.94, 6.66 and 7.09 nM (S/N = 3), respectively. Also, the amperometric technique was applied for the measuring of the target molecules in the range of 0.013-16, 0.008-12 and, 0.01-14 μM for AA, AC and, Caf with the detection limit of 6.28, 3.64 and 3.85 nM, respectively. Besides, the ZnO-Zn2SnO4-SnO2/Gr/CPE shows an excellent selectivity, stability, repeatability, and reproducibility for the determination of AA, AC and, Caf. Finally, the proposed sensor was successfully used to show the amount of AA, AC and, Caf in urine, blood serum samples with recoveries ranging between 95.8% and 104.06%.

18% 효율 Cu(In,Ga)Se2 박막태양전지용 ZnSnO 버퍼층의 원자층 증착법 및 분석 (Characterization of Atomic-Layer Deposited ZnSnO Buffer Layer for 18%- Efficiency Cu(In,Ga)Se2 Solar Cells)

  • 김선철;김승태;안병태
    • Current Photovoltaic Research
    • /
    • 제3권2호
    • /
    • pp.54-60
    • /
    • 2015
  • ZnSnO thin films were deposited by atomic layer deposition (ALD) process using diethyl zinc ($Zn(C_2H_5)_2$) and tetrakis (dimethylamino) tin ($Sn(C_2H_6N)_4$) as metal precursors and water vapor as a reactant. ALD process has several advantages over other deposition methods such as precise thickness control, good conformality, and good uniformity for large area. The composition of ZnSnO thin films was controlled by varying the ratio of ZnO and $SnO_2$ ALD cycles. The ALD ZnSnO film was an amorphous state. The band gap of ZnSnO thin films increased as the Sn content increased. The CIGS solar cell using ZnSnO buffer layer showed about 18% energy conversion efficiency. With such a high efficiency with the ALD ZnSnO buffer and no light soaking effect, AlD ZnSnO buffer mighty be a good candidate to replace Zn(S,O) buffer in CIGSsolar cells.

Solvothermal 법에 의해 제조된 Sn-$TiO_2$ 나노 반도체 촉매 상에서의 수중 부유 톨루엔 광분해 반응 (Toulene Removal over the Water-suspended Sn-Incorporated $TiO_2$ Photocatalyst Prepared by Solvothermal Method)

  • 김지연;김지은;강미숙
    • 청정기술
    • /
    • 제16권1호
    • /
    • pp.46-50
    • /
    • 2010
  • 본 연구에서는 새집증후군의 대표적 원인물질인 수중 부유 톨루엔을 효율적으로 분해하기 위해 Sn원소를 티타니아 골격에 삽입하여 고온 고압에서 용매열(solvothermal)법으로 Sn-$TiO_2$ 나노 광촉매를 제조하였다. 제조한 Sn-$TiO_2$의 물리적 특성은 X-ray 회절분석법, 투과전자현미경, 주사전자현미경, 자외선-가시선 분광 광도계를 통하여 분석하였다. Sn-$TiO_2$의 광촉매 활성은 수중 부유 톨루엔 광분해반응을 통해 확인하였고, 반응 전후의 수중 부유 톨루엔 농도는 자외선-가시선 분광광도계를 이용하여 측정하였다. 수중 부유 톨루엔 광분해반응 결과 0.01 mol% Sn-$TiO_2$촉매가 순수 $TiO_2$ (anatase) 광촉매보다 활성이 향상되었으며. 500ppm 수중 부유 톨루엔은 300분 이내에 완전히 분해되었다.

나노 SnO2:CNT를 이용한 가스센서의 제작 및 특성연구 (Characteristics and Preparation of Gas Sensors Using Nano SnO2:CNT)

  • 유일
    • 한국재료학회지
    • /
    • 제26권9호
    • /
    • pp.468-471
    • /
    • 2016
  • $SnO_2:CNT$ thick films for gas sensors were fabricated by screen printing method on alumina substrates and were annealed at $300^{\circ}C$ in air. The nano $SnO_2$ powders were prepared by solution reduction method using tin chloride ($SnCl_2.2H_2O$), hydrazine ($N_2H_4$) and NaOH. Nano $SnO_2:CNT$ sensing materials were prepared by ball-milling for 24h. The weight range of CNT addition on the $SnO_2$ surface was from 0 to 10 %. The structural and morphological properties of these sensing material were investigated using X-ray diffraction and scanning electron microscopy and transmission electron microscope. The structural properties of the $SnO_2:CNT$ sensing materials showed a tetragonal phase with (110), (101), and (211) dominant orientations. No XRD peaks corresponding to CNT were observed in the $SnO_2:CNT$ powders. The particle size of the $SnO_2:CNT$ sensing materials was about 5~10 nm. The sensing characteristics of the $SnO_2:CNT$ thick films for 5 ppm $H_2S$ gas were investigated by comparing the electrical resistance in air with that in the target gases of each sensor in a test box. The results showed that the maximum sensitivity of the $SnO_2:CNT$ gas sensors at room temperature was observed when the CNT concentration was 8wt%.

SnO2 박막의 열처리 온도에 따른 CO2가스 반응성 (CO2 Gas Responsibility of SnO5 Thin Film Depending on the Annealing Temperature)

  • 오데레사
    • 반도체디스플레이기술학회지
    • /
    • 제16권4호
    • /
    • pp.75-78
    • /
    • 2017
  • The $CO_2$ gas responsibility of $SnO_2$ thin films was researched with various annealing temperatures. $SnO_2$ was prepared on n-type Si substrate by RF magnetron sputtering system and annealed in a vacuum condition. The bonding structure of $SnO_2$ was changed from amorphous to crystal structure with increasing the annealing temperature, and the content of oxygen vacancy was researched the highest of the annealed at $60^{\circ}C$. The $SnO_2$ annealed at $60^{\circ}C$ had the characteristics of the highest capacitance. The special properties of $CO_2$ gas responsibility was found at the $SnO_2$ thin film annealed at $60^{\circ}C$ with amorphous structure because of the combination with the oxygen vacancies and $CO_2$ gases changed the resistivity. The amorphous structure enhanced the responsibility at the $SnO_2$ surface and the conductivity of $SnO_2$ thin film.

  • PDF

용액공정 기반 SnO2와 TiO2를 이중 전자수송층으로 적용한 양자점 전계 발광소자의 특성비교 연구 (A Comparison Study on Quantum Dots Light Emitting Diodes Using SnO2 and TiO2 Nanoparticles as Solution Processed Double Electron Transport Layers)

  • 신승철;김수현;장승훈;김지완
    • 마이크로전자및패키징학회지
    • /
    • 제27권3호
    • /
    • pp.69-72
    • /
    • 2020
  • 본 연구에서는 SnO2 nanoparticles (NPs) 위에 TiO2 NPs를 코팅하여 Quantum Dots Light Emitting Diodes (QLEDs)를 제작하였다. TiO2 NPs는 SnO2 NPs보다 conduction band minimum (CBM) 준위가 낮다. 따라서 SnO2 층과 발광층의 CBM 준위 사이에 위치해 에너지 장벽을 감소시키고, 전자의 이동을 원활하게 할 것으로 예상하였다. QLEDs는 inverted 구조로 제작되었으며, SnO2 단일층을 사용한 경우보다 발광 특성이 향상된 것을 확인하였다. 이중 전자수송층을 적용한 이번 연구를 통해 SnO2를 QLEDs에 전자수송층으로 적용할 수 있을 것으로 기대한다.

이중 전기방사법을 이용하여 SnO2-Sn-Ag3Sn 나노 입자가 균일하게 내재된 탄소 나노섬유의 합성 (Synthesis of Well-Distributed SnO2-Sn-Ag3Sn Nanoparticles in Carbon Nanofibers Using Co-Electrospinning)

  • 안건형;안효진
    • 한국재료학회지
    • /
    • 제23권2호
    • /
    • pp.143-148
    • /
    • 2013
  • Well-distributed $SnO_2$-Sn-$Ag_3Sn$ nanoparticles embedded in carbon nanofibers were fabricated using a co-electrospinning method, which is set up with two coaxial capillaries. Their formation mechanisms were successfully demonstrated. The structural, morphological, and chemical compositional properties were investigated by field-emission scanning electron spectroscopy (FESEM), bright-field transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). In particular, to obtain well-distributed $SnO_2$ and Sn and $Ag_3Sn$ nanoparticles in carbon nanofibers, the relative molar ratios of the Ag precursor to the Sn precursor including 7 wt% polyacrylonitrile (PAN) were controlled at 0.1, 0.2, and 0.3. The FESEM, bright-field TEM, XRD, and XPS results show that the nanoparticles consisting of $SnO_2$-Sn-$Ag_3Sn$ phases were in the range of ~4 nm-6 nm for sample A, ~5 nm-15 nm for sample B, ~9 nm-22 nm for sample C. In particular, for sample A, the nanoparticles were uniformly grown in the carbon nanofibers. Furthermore, when the amount of the Ag precursor and the Sn precursor was increased, the inorganic nanofibers consisting of the $SnO_2$-Sn-$Ag_3Sn$ nanoparticles were formed due to the decreased amount of the carbon nanofibers. Thus, well-distributed nanoparticles embedded in the carbon nanofibers were successfully synthesized at the optimum molar ratio (0.1) of the Ag precursor to the Sn precursor after calcination of $800^{\circ}C$.

구형 Sn 표면의 SnO2 나노와이어 네트워크: 합성과 NO2 감지 특성 (SnO2 Nanowire Networks on a Spherical Sn Surface: Synthesis and NO2 sensing properties)

  • 팜티엔헝;조현일;슈엔하이엔뷔엔;이상욱;이준형;김정주;허영우
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.142.2-142.2
    • /
    • 2018
  • One-dimensional metal oxide nanostructures have attracted considerable research activities owing to their strong application potential as components for nanosize electronic or optoelectronic devices utilizing superior optical and electrical properties. In which, semiconducting $SnO_2$ material with wide-bandgap Eg = 3.6 eV at room temperature, is one of the attractive candidates for optoelectronic devices operating at room temperature [1, 2], gas sensor [3, 4], and transparent conducting electrodes [5]. The synthesis and gas sensing properties of semiconducting $SnO_2$ nanomaterials have become one of important research issues since the first synthesis of SnO2 nanowires. In this study, $SnO_2$ nanowire networks were synthesized on a basis of a two-step process. In step 1, Sn spheres (30-800 nm in diameter) embedded in $SiO_2$ on a Si substrate was synthesized by a chemical vapor deposition method at $700^{\circ}C$. In step 2, using the source of these Sn spheres, $SnO_2$ nanowire (20-40 nm in diameter; $1-10{\mu}m$ in length) networks on a spherical Sn surface were synthesized by a thermal oxidation method at $800^{\circ}C$. The Au layers were pre-deposited on the surface of Sn spherical and subsequently oxidized Sn surface of Sn spherical formed SnO2 nanowires networks. Field emission scanning electron microscopy and high-resolution transmission electron microscopy images indicated that $SnO_2$ nanowires are single crystalline. In addition, the $SnO_2$ nanowire is also a tetragonal rutile, with the preferred growth directions along [100] and a lattice spacing of 0.237 nm. Subsequently, the $NO_2$ sensing properties of the $SnO_2$ network nanowires sensor at an operating temperature of $50-250^{\circ}C$ were examined, and showed a reversible response to $NO_2$ at various $NO_2$ concentrations. Finally, details of the growth mechanism and formation of Sn spheres and $SnO_2$ nanowire networks are also discussed.

  • PDF