• Title/Summary/Keyword: Sn-3.5mass%Ag

Search Result 14, Processing Time 0.017 seconds

Characterization of tissue conditioner containing chitosan-doped silver nanoparticles (키토산-은나노 복합체가 함유된 의치 연성이장재 특성에 관한 연구)

  • Nam, Ki Young;Lee, Chul Jae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.4
    • /
    • pp.275-281
    • /
    • 2020
  • Purpose: Development of a latent antimicrobial soft liner is strongly needed to overcome a possible inflammation related with its dimensional degrade or surface roughness. Modified tissue conditioner (TC) containing chitosan-doped silver nanoparticles (ChSN) complexes were synthesized and assessed for their characterizations. Materials and methods: ChSN were preliminarily synthesized from silver nitrate (AgNO3), sodium borohydride (NaBH4) as a reducing agent and chitosan biopolymer as a capping agent. Ultraviolet-visible and Fourier transform infrared spectroscopy were conducted to confirm the stable reduction of nanoparticles with chitosan. Modified TC blended with ChSN by 0 (control), 1.0, 3.0 and 5.0 % mass fraction were mechanically tested by ultimate tensile strength (UTS), silver ion elution and color stability (n=7). Results: At 24 hour and 7 day storage periods, UTS values were not significant (P>.05) as compared with pristine TC (control) and silver ion was detected with the dose-dependent values of ChSN incorporated. Color stability of TC were influenced by ChSN add, with the higher doses, the significantly greater color changes (P<.05). Conclusion: A stable synthesized ChSN was acquired and modified TC loading ChSN was characterized as silver ion releasing without detrimental physical property. For its clinical application, antimicrobial test, color control and multifactor investigations are still required.

Lead-free inorganic metal perovskites beyond photovoltaics: Photon, charged particles and neutron shielding applications

  • Srilakshmi Prabhu;Dhanya Y. Bharadwaj;S.G. Bubbly;S.B. Gudennavar
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1061-1070
    • /
    • 2023
  • Over the last few years, lead-free inorganic metal perovskites have gained impressive ground in empowering satellites in space exploration owing to their material stability and performance evolution under extreme space environments. The present work has examined the versatility of eight such perovskites as space radiation shielding materials by computing their photon, charged particles and neutron interaction parameters. Photon interaction parameters were calculated for a wide energy range using PAGEX software. The ranges of heavy charged particles (H, He, C, N, O, Ne, Mg, Si and Fe ions) in these perovskites were estimated using SRIM software in the energy range 1 keV-10 GeV, and that of electrons was computed using ESTAR NIST software in the energy range 0.01 MeV-1 GeV. Further, the macroscopic fast neutron removal cross-sections were also calculated to estimate the neutron shielding efficiencies. The examined shielding parameters of the perovskites varied depending on the radiation type and energy. Among the selected perovskites, Cs2TiI6 and Ba2AgIO6 displayed superior photon attenuation properties. A 3.5 cm thick Ba2AgIO6-based shield could reduce the incident radiation intensity to half its initial value, a thickness even lesser than that of Pb-glass. Besides, CsSnBr3 and La0.8Ca0.2Ni0.5Ti0.5O3 displayed the highest and lowest range values, respectively, for all heavy charged particles. Ba2AgIO6 showed electron stopping power (on par with Kovar) better than that of other examined materials. Interestingly, La0.8Ca0.2Ni0.5Ti0.5O3 demonstrated neutron removal cross-section values greater than that of standard neutron shielding materials - aluminium and polyethylene. On the whole, the present study not only demonstrates the employment prospects of eco-friendly perovskites for shielding space radiations but also suggests future prospects for research in this direction.

Practical Application of Lead-free Solder in Electronic Products

  • Cho Il-Je;Chae Kyu-Sang;Min Jae-Sang;Kim Ik-Joo
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2004.09a
    • /
    • pp.93-99
    • /
    • 2004
  • At present, LG Electronics pushes ahead to eliminate the Pb(Lead) -a hazardous material- from all products. Especially, we have performed to select the optimum standard composition of lead free alloy for the application to products for about 3 years from 2000. These days, we have the chance for applying to the mass-production. This project constructed the system for applying the lead free solders on consumer electronic products, which is one of the major products of the LG Electronics. To select the lead free solders with corresponding to the product features, we have passed through the test and applied with Sn-3.0Ag-0.5Cu alloy system to our products, and for the application to the high melting temperature composition, we secured the thermal resistance of the many parts and substrate and optimized the processing conditions. We have operated the temperature cycling test and the high temperature storage test under the standards to confirm the reliability of the products. On these samples, we considered the consequence of our decision by the operating test. For the long life time of the product, we have operated the temperature cycling test at $-45^{\circ}C-+125^{\circ}C$, 1 cycle/hour, 1000 cycles. Also we have tested the tin whisker growth about lead free plating on lead finish. We have analyzed with the SEM, EDS and any other equipment for confirming the failure mode at the joint and the tin whisker growth on lead free finish.

  • PDF

A STUDY ON THE MICROSTRUCTURES OF THE AMALGAM ALLOYS AND AMALGAMS (치과용 아말감합금 및 아말감의 마세구조에 관한 연구)

  • Yeon, Sang-Heum;Lee, Chung-Sik;Lee, Myung-Jong;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.1
    • /
    • pp.87-105
    • /
    • 1996
  • The purpose of this study is to investigate the characteristics of the compositions and phases of amalgam alloys and amalgams by using EMPA and X-ray diffractometer. Each specimen was made from Caulk Fine Cut Clow copper lathe cut amalgam), Caulk Spherical (low copper spherical amalgam), Tytin (high copper unicorn position amalgam), Dispersally (high copper admixed amalgam) and Valiant (Palladium enriched amalgam). For preparing amalgam alloys, Tytin and Valiant were used as powder forms and the others were used as tablet forms after being polished with polishing machine. For preparing amalgams, each amalgam alloy and Hg were measured, and triturated by mechanical amalgamater according to user's instructions. After triturating, the triturated mass was inserted to cylindrical metal mold and simultaneously adapted by cylindrical condenser with same diameter and condensed by Instron universal testing machine with 80kg pressure & 1mm/min speed. Each specimen was removed from the metal mold and stored at room temperature for a week. The specimen was polished with the same polishing machine for amalgam alloy. For observation of microstructure and analysis of composition of amalgam alloys and amalgams, EMPA was used to get secondary electron images, backscattered images and characteristic X-ray images of Ag, Sn, Cu, Zn, Hg. To analyze compositions of amalgam alloys and amalgams, X-ray diffractometer was used. Amalgam alloys were scanned at the range of 2${\theta}$ of 30-$85^{\circ}$ and the speed of $4^{\circ}$/min with Cuka line and amalgams were scanned at the range of 2${\theta}$ of 28-$44^{\circ}$ and the speed of $4^{\circ}$/min with Cuka line. By comparing obtained d(distance between surfaces) and d of expected phases and atoms in amalgam alloys and amalgams in ASTM card, phases and atoms were identified. The results were as follows, 1. In Caulk Fine Cut amalgam alloy typical ${\gamma}$ phase was shown, and in amalgam, ${\gamma}$, ${\gamma}_1$ and ${\gamma}_2$ phases were observed. 2. In Caulk Spherical amalgam alloy ${\gamma}$, Ag, Cu and $\varepsilon$ phases were shown, and in amalgam ${\gamma}$, ${\gamma}_1$, ${\gamma}_2$ and $\eta$ phases were observed. 3. In Tytin amalgam alloy ${\gamma}$, Cu and $\varepsilon$ phases were shown, and in amalgam ${\gamma}$, ${\gamma}_1$, $\eta$ and $\varepsilon$ phases were observed. 4. In Dispersalloy ${\gamma}$, Ag, Cu and $\varepsilon$ phases were shown, and in amalgam ${\gamma}$, ${\gamma}_1$, $\eta$ and $\varepsilon$ phases were observed. 5. In Valiant alloy ${\gamma}$, Cu and e phases were shown, and in amalgam ${\gamma}$, ${\gamma}_1$, $\eta$ and $\varepsilon$ phases were observed.

  • PDF