• Title/Summary/Keyword: Smoke-proof system

Search Result 6, Processing Time 0.062 seconds

Study on Suggestion of Smoke-proof System Using a Restroom for a Refuge Space (화장실 이용 피난공간의 방연시스템 제안 및 실규모 실험)

  • Kim, Jung-Yup;Shin, Hyun-Joon
    • Fire Science and Engineering
    • /
    • v.26 no.5
    • /
    • pp.61-66
    • /
    • 2012
  • In restroom on high-rise building, exhaust system comprising the blower and duct is installed to discharge the odor and the water is suppled. Thus the restroom with fire and flame protection system may be used as refuge area in a fire situation. The study presents the smoke-proof system which operates such that the exhaust system to discharge the odor is converted to air supply system and appropriate pressure difference between the restroom and the accommodation is maintained. Also real-scale test facilities of smoke-proof system for refuge space using a restroom are installed on 5-story smoke control test building and experiments for evaluating the operational performance of smoke-proof system are carried out.

A Study on the Smoke Control Performance Evaluation of High-rise Buildings under Smokeproof Enclosure Design Scenarios (초고층 건축물의 수직 구획화에 따른 급기가압제연시스템 성능평가에 관한 연구)

  • Bae, Sang-Hwan;Ryu, Hyung-Kyou;Lee, Byung-Seok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.7
    • /
    • pp.343-350
    • /
    • 2014
  • Regardless of the building design scenarios, evaluation of high-rise buildings required to have smoke-proof enclosures that are provided with a smoke management system. The goal of the smoke management system design is to make sure the pressure differentials at every story within the building fall within the allowable pressure range. If the minimum design pressure is not met, smoke may enter the stair. If the provided pressure is too great, it becomes difficult for occupants to open the doors, while attempting to egress. Ensuring that the pressure differential between the vestibule and the floor is within the prescribed range becomes challenging, due to natural effects on the building, such as the stack effect. In this research, smokeproof enclosure design scenarios were evaluated; and as a result, separation levels for compartmentation were deduced, in the balancing of pressurized-vestibule smoke control systems.

A Study on the Smoke Proof Measure of High Rise Buildings. (건축화재시 피난대책에 관한 연구 -고층건물의 제연을 중심으로-)

  • 이영재;이근영
    • Fire Science and Engineering
    • /
    • v.4 no.1
    • /
    • pp.3-12
    • /
    • 1990
  • This study is to Present the air Pressurization system of staircase as a way to decrease the injury of human life which is suffocated by smoke when the fire break out in building. 1) The best among an air pressurization system of stairshaft Is multiple air Injection system established to be situated an air injection point in each layer. 2) If the air pressurization system is also applied to the elevator accessory room to use commonly, it can prevent from the smoke spreading and pollution inside building caused by stack effect of elevator shaft. 3) For the reasonable and safe escape and air pressurization system must be carried out from the project of basic shape of building under the close cooperation with architect and fire protection expert.

  • PDF

Study on the Fire Risk Prediction Assessment due to Deterioration contact of combustible cables in Underground Common Utility Tunnels (지하공동구내 가연성케이블의 열화접촉으로 인한 화재위험성 예측평가)

  • Ko, Jaesun
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.1
    • /
    • pp.135-147
    • /
    • 2015
  • Recent underground common utility tunnels are underground facilities for jointly accommodating more than 2 kinds of air-conditioning and heating facilities, vacuum dust collector, information processing cables as well as electricity, telecommunications, waterworks, city gas, sewerage system required when citizens live their daily lives and facilities responsible for the central function of the country but it is difficult to cope with fire accidents quickly and hard to enter into common utility tunnels to extinguish a fire due to toxic gases and smoke generated when various cables are burnt. Thus, in the event of a fire, not only the nerve center of the country is paralyzed such as significant property damage and loss of communication etc. but citizen inconveniences are caused. Therefore, noticing that most fires break out by a short circuit due to electrical works and degradation contact due to combustible cables as the main causes of fires in domestic and foreign common utility tunnels fire cases that have occurred so far, the purpose of this paper is to scientifically analyze the behavior of a fire by producing the model of actual common utility tunnels and reproducing the fire. A fire experiment was conducted in a state that line type fixed temperature detector, fire door, connection deluge set and ventilation equipment are installed in underground common utility tunnels and transmission power distribution cables are coated with fire proof paints in a certain section and heating pipes are fire proof covered. As a result, in the case of Type II, the maximum temperature was measured as $932^{\circ}C$ and line type fixed temperature detector displayed the fire location exactly in the receiver at a constant temperature. And transmission power distribution cables painted with fire proof paints in a certain section, the case of Type III, were found not to be fire resistant and fire proof covered heating pipes to be fire resistant for about 30 minutes. Also, fire simulation was carried out by entering fire load during a real fire test and as a result, the maximum temperature is $943^{\circ}C$, almost identical with $932^{\circ}C$ during a real fire test. Therefore, it is considered that fire behaviour can be predicted by conducting fire simulation only with common utility tunnels fire load and result values of heat release rate, height of the smoke layer, concentration of O2, CO, CO2 etc. obtained by simulation are determined to be applied as the values during a real fire experiment. In the future, it is expected that more reliable information on domestic underground common utility tunnels fire accidents can be provided and it will contribute to construction and maintenance repair effectively and systematically by analyzing and accumulating experimental data on domestic underground common utility tunnels fire accidents built in this study and fire cases continuously every year and complementing laws and regulations and administration manuals etc.

Development of Technology to Secure Refuge Space by Using Existing Restroom (화장실을 이용한 층별 피난공간 확보 기술개발)

  • Kim, Ji-Seok;Shin, Hyun-Joon;Kim, Jung-Yup;Park, Byoung-Jik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.1
    • /
    • pp.24-30
    • /
    • 2015
  • The fire on a high-rise building would possibly cause fatalities because of ineffective egress due to extended evacuation distance in huge building structure, coupled with dense population, thus requiring secured optimal evacuation method and space. The restroom located in the living space is considered to be useful refuge space which is built with wet pipe and noncombustible materials. This study aimed to develop a system that would make use of the existing restroom as a fire refuge space. Ventilation duct were installed to discharge odor during normal conditions. We could serve the air supply duct to also raise the air pressure in the restroom so as to prevent the toxic gas from gapping around the restroom. The nozzle for the water screen would be installed in restroom door facing the living room to form the water screen which would protect the door. This study is intended to replace the existing refuge space with the restroom in such a way as described above.

A Study on the Application of Bushings Fire Prevent Structure to Prevent Fire Spread of Transformer (변압기의 화재확산 방지를 위한 부싱 방화구조체 적용에 관한 연구)

  • Kim, Do-Hyun;Cho, Nam-Wook;Yoon, Choung-Ho;Park, Pil-Yong;Park, Keun-Sung
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.53-62
    • /
    • 2017
  • Electric power which is the energy source of economy and industries requires long distance transportation due to regional difference between its production and consumption, and it is supplied through the multi-loop transmission and distribution system. Prior to its actual use, electric power flows through several transformations by voltage transformers in substations depending on the characteristics of each usage, and a transformer has the structure consisting of the main body, winding wire, insulating oil and bushings. A transformer fire that breaks out in substations entails the primary damage that interrupts the power supply to houses and commercial facilities and causes various safety accidents as well as the secondary economic losses. It is considered that causes of such fire include the leak of insulating oil resulting from the destruction of bottom part of bushings, and the chain reaction of fire due to insulating oil that reaches its ignition point within 1 second. The smoke detector and automatic fire extinguishing system are established in order to minimize fire damage, but a difficulty in securing golden time for extinguishing fire due to delay in the operation of detector and release of gas from the extinguishing system has become a problem. Accordingly, this study was carried out according to needs of active mechanism to prevent the spread of fire and block the leak of insulating oil, in accordance with the importance of securing golden time in extinguishing a fire in its early stage. A bushings fireproof structure was developed by applying the high temperature shape retention materials, which are expanded by flame, and mechanical flame cutoff devices. The bushings fireproof structure was installed on the transformer model produced by applying the actual standards of bushings and flange, and the full scale fire test was carried out. It was confirmed that the bushings fireproof structure operated at accurate position and height within 3 seconds from the flame initiation. It is considered that it could block the spread of flame effectively in the event of actual transformer fire.