• Title/Summary/Keyword: Smoke Simulation

Search Result 253, Processing Time 0.023 seconds

A Study on Smoke Movement by Using Large Eddy Simulation I. Smoke Control Systems and Extraction Flowrate (대와류모사를 이용한 연기이동의 연구 I. 제연방식과 배기풍량)

  • 박외철
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.2
    • /
    • pp.40-45
    • /
    • 2003
  • To evaluate the smoke control systems, the large eddy simulation turbulence model based Fire Dynamics Simulate was applied to a 2m $\times$ 2m $\times$ 2.4m room with an opening. The smoke removal rate was investigated for three different smoke control systems: ventilation, extraction and pressurization. When the opening was closed, the smoke removal rates of the smoke control systems were almost the same as expected. The pressurization system showed a lower smoke removal rate compared with the other two smoke control systems for the room with the opening, and hence the pressurization system might not be efficient for a place with large openings. It was shown that the lower extraction flowrate is, the longer time the ventilation system requires to remove smoke. From these results, the ventilation system is recommended for subway stations where several large openings exist.

A Study on Smoke Movement by Using Large Eddy Simulation II. Smoke Control Systems and Opening Size (대와류모사를 이용한 연기이동의 연구 II. 제연방식과 개구부의 크기)

  • 박외철
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.34-38
    • /
    • 2003
  • The large eddy simulation based Fire Dynamics Simulator was utilized to investigate the effects of the size of an opening on smoke removal performance for the three smoke control systems-ventilation purge, and extraction. Three different opening sizes, $r_A$=1, 2, and 3 were investigated while the flow rate remained 0.75 $m^3/s$ at the inlet or outlet depending on the systems. Increase of the opening size did not give a significant difference in the smoke removal rate for the three smoke control systems, though the increasing opening size slightly improved smoke removal. The extraction system was shown the best smoke control system, and the purge system yielded low performance compared to the other two systems for all the different opening sizes.

A comparative Study for dispersion model in evacuation plan by using MAS-based evacuation simulation (MAS 기반 피난시뮬레이션을 이용한 분산대피 비교 연구)

  • Jang, Jae-Soon;Rie, Dong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.1
    • /
    • pp.59-63
    • /
    • 2014
  • Smoke is one of the most critical factor when escaping from the fire since it reduces visibility and interrupts finding emergency exit lights. Therefore, it is recommended that an evacuation simulation program should incorporate the smoke factor. In addition, it is suggested that the program should include not only the unilateral damage by the smoke but also the detour evacuation by risk communication. In this study, MAS (Multi Agent System)-based simulation program which incorporates the reduced walking speed by smoke and adopts the dispersion evacuation logic during escaping from the fire. To make comparison, a commercial evacuation program, Pathfinder was used. It was found that the simulation results of MAS (Multi Agent System)-based program is better than Pathfinder in terms of safe evacuation. It means that evacuation simulation need a additional evaluation categories that include not only quick evacuation time but also safe evacuee number.

A transient CFD simulation of ventilation system operation for smoke control in a subway station equipped with a Platform Screen Door(PSD) when a train under fire is approaching the station (화재열차의 역사 접근 시 PSD가 설치된 역사 제연을 위한 환기장치 운전 비정상상태 해석)

  • Shin, Kyu-Ho;Hur, Nahm-Keon;Won, Chan-Shik
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.269-272
    • /
    • 2006
  • The heat and smoke which generated by subway under fire is one of the most harmful factor in air tighten underground station. To prevent this, Trackway Exhaust System(TES) can be used. The heat released from the train running in the tunnel raises the temperature at the platform and the trackway, and thus proper ventilation system is required for comfortable underground environment. When the fire is occurred, TES is operated as smoke exhaust mode from normal ventilation mode. In the present study, the subway station which is one of the line number 9 in Seoul subway is modeled, and fired situation is simulated with several ventilation mode of ventilation system in trackway. For this simulation whole station is modeled. Non steady state 3D simulation which considered train under fire is entering to the station is performed. Temperature and smoke distribution in platform and trackway are compared. To represent heat by fire, heat flux was given to the fired carriage, also to describe smoke by fire, concentration of CO is represented. As the result of present study, temperature and smoke distribution is different as the method of ventilation in trackway and platform is changed. In over side of trackway, the fan must be operated as exhaust mode for efficient elimination of heat and smoke, and supply mode of fan operation in under side shows better distribution of heat and smoke. The ventilation system which is changed from ventilation mode to exhaust mode can be applied to control heat and smoke under fire.

  • PDF

Developing Vehicle-launched Smoke Grenade M&S of Moderate-resolution for Applications in Engagement Simulation (교전시뮬레이션에의 활용을 위한 적정해상도의 차량 연막유탄 M&S 개발)

  • Min, Seojung;Lee, Sangjin
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.59-69
    • /
    • 2019
  • Smoke grenade is the most primary counteract of tank for its survival against threats, therefore a number of related researches and developments of M&S are being conducted. In this research, a vehicle-launched smoke grenade model is developed, that covers the essential engineering-level parameters, and also is applicable to engagement-level simulations because of its unheavy computational load. First of all, input parameters of the model were determined to include the principal factors from engineering to engagement level. In the model, smoke and LOS are modeled as simple figures, a disk and a line, so that the computational load is not as much as that of particle-model-based M&Ss. A test simulation is also carried out to analyze the effect of smoke grenade for a tank. This model is to be inserted into a basic tank model on AddSIM. The users of AddSIM will be able to simulate various scenarios including smoke grenades.

A study on safety evaluation by changing smoke ventilation mode in subway tunnels (지하철터널 환기변환모드에 따른 안전성 평가에 관한 연구)

  • Rie, Dong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.4
    • /
    • pp.389-400
    • /
    • 2003
  • In order to recommend the mechanical smoke exhaust operation mode, Subway Environmental Simulation (SES) is used to predict the airflow of the inlet and outlet tunnel for the subway station. Fire Dynamic Simulation (FDS) is used the SES's velocity boundary conditions to clarity the smoke exhaust effectiveness by the variations with mechnical ventilation system. We compared each 6 types of smoke exhaust systems for the result of smoke density and temperature distributions for 1.5m height from the subway station base in order to clarify the safety evaluation for the heat and smoke exhaust on subway fire.

  • PDF

A Simulation Study on Distributions of Smoke and Temperature in Accommdation on Shipboard Fires (선박의 거주구역 화재시 연기거동 및 온도변화에 관한 시뮬레이션 연구)

  • Kim, Won-Ouk;Kim, Jong-Su;Oh, Sae-Gin;Kim, Sung-Hwan
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.293-294
    • /
    • 2006
  • This paper aims to simulate by FDS(Fire Dynamics Simulator) the distributions of temperature and smoke on fires in accommodations on boards. The paper focuses on analysis of temperature at fire occurrence and soot density. The purpose of this study is to predict the possibility of safe escape and efficient fire extinguishing method using fire simulation results.

  • PDF

A Study of Heat and Smoke Exhaust to Subway Tunnel Direction (지하철 터널부로의 열 및 연기배출에 관한 연구)

  • Rie, Dong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.1-8
    • /
    • 2004
  • This study aims to derive the operation method of a comprehensive ventilation system which is capable of providing passengers with safe exit paths from platforms in onboard fire situations. To accomplish this, the airflow distributions in subway platforms under 6 types of tunnel vent system were calculated in addition to having analyzed diffusion behaviors of smoke and heat exhaust in such states by performing 6 kinds of different ventilation scenarios in a 3-D Fire Dynamic Simulation (FDS) simulation model. In order to recommend the mechanical smoke exhaust operation mode, Subway Environmental Simulation(SES) is used to predict the airflow of the inlet and outlet tunnel for the subway station to clarify the safety evaluation fir the heat and smoke exhaust on subway fire events.

Development of Post-Processor for Fire Simulation (화재 Simulation을 위한 Post-Processor 개발)

  • Chang J.;Hur N.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.155-160
    • /
    • 2001
  • When caught in a fire inside a building or a tunnel the generated smoke is the main cause of the bad visibility, which makes difficult for a person to find escape route. Therefore it is required to visualize the simulated results of smoke realistically from a viewpoint of a person caught in a fire. In the present study, demonstrated is a CFD post-processor which can visualize the objects through smoke from the results of CFD fire simulation.

  • PDF

A Study of Heat St Smoke Evacuation Characteristics by the Changing of Operational Method of Tunnel Fan Shaft Ventilation System for Fire on Subway Train Vehicle (지하철 화재시 본선터널 환기시스템에 따른 열 및 연기배출특성)

  • 이동호;유지오
    • Fire Science and Engineering
    • /
    • v.17 no.2
    • /
    • pp.62-69
    • /
    • 2003
  • The smoke control system in subway platform is not only using for smoke exhaust facility but also using ventilation system. For this reason, smoke vent effectiveness is depending on its position, ventilating volume capacity and the vent method. In this study, the passenger's evacuation time was calculated for the case of fire on sloped subway train vehicle in subway platform. In order to recommend the mechanical smoke exhaust operation mode, SES (Subway Environmental Simulation) was used to predict the airflow of the inlet and outlet tunnel for the subway station. Fire dynamics Simulator(FDS) was used the SES's velocity boundary conditions to calculate the smoke density and temperature under the condition of fire on stopped subway train vehicle at the platform. We compared smoke density and temperature distributions for each 6 types of smoke exhaust systems to clarify the characteristics of smoke and hot air exhaust effectiveness from the result of fire simulation.