• 제목/요약/키워드: Smoke Flow Visualization

검색결과 79건 처리시간 0.027초

경남지역 학교 급식조리실 개선 전후 환기성능 평가 (Evaluation of Ventilation Effectiveness Before and After Kitchen Renovation in Schools of Gyeongsangnam-do)

  • 손종원;김태형;하현철;김병훈
    • 한국산업보건학회지
    • /
    • 제34권1호
    • /
    • pp.35-47
    • /
    • 2024
  • Objectives: Many cases of lung cancer have been reported by school kitchen workers as occupational cancer. Twenty-eight schools in Gyeongsangnam-do Province were selected to evaluate the effect of improved kitchen ventilation systems. Ventilation characteristics before and after renovation were compared and design techniques were identified. Methods: In the design stage for kitchen ventilation systems, expert intervention was used to improve the designs. Ventilation characteristics and air quality were evaluated before and after the renovations. Hood face velocity and fan flow rate were measured and the smoke visualization technique was used to evaluate the capability of protecting worker's breathing zone. The concentrations of PM0.3 were measured at points not adjacent to cooking equipment because these concentrations fluctuate greatly. Results: Mean hood face velocity increased from 0.29 m/s before renovation to 0.7m/s after renovation. The concentrations of PM0.3 showed a roughly 95% reduction. Concentrations of CO showed more than a 75% reduction. Smoke visualization showed greater protection of workers' breathing zone. Conclusions: Advanced design techniques for school kitchen ventilation systems were applied to renovate old kitchen ventilation systems. The performance of the new kitchen ventilation systems was nearly excellent. Further improvement of design techniques is still needed, however.

충돌제트를 이용한 Pedestal 형상의 칩 냉각연구 (Jet Impingement Heat Transfer on a Cylindrical Pedestal Encountered in Chip Cooling)

  • 이대희;이준식;정영석;정승훈
    • 대한기계학회논문집B
    • /
    • 제27권1호
    • /
    • pp.1-8
    • /
    • 2003
  • The heat transfer and flow measurements on a cylindrical pedestal mounted on a flat surface with a turbulent impinging jet were made. The experiments were made for the jet Reynolds number of Re = 23,000, the dimensionless nozzle-to-surface distance of L/d = 2~10, the dimensionless pedestal height of H/D = 0~1.5. Measurements of the surface temperature and the Nusselt number distributions on the plate surface were made using liquid crystal and shroud-transient technique. Flow measurements involve smoke flow visualization and the wall pressure coefficient. The results show that the wall pressure coefficient sharply decreases along the upper surface of the pedestal. However, the pressure increases when the fluid escapes from the pedestal and then collides on the plate surface. The secondary maxima in the Nusselt numbers occur in the region of 1.0 $\leq$ r/d $\leq$ 1.9. Their values for the case of H/D = 0.5 are maximum 80% higher than those for other cases. The formation of the secondary maxima may be attributed to the reattachment of flow on the plate surface which was separated at the edge of the pedestal.

와동 발생기를 이용한 자외선 살균 시스템 성능 향상에 관한 연구 (A Study on Enhancement of UV Disinfection System Performance by the Vortex Generator)

  • 김봉환;안국찬;김동진
    • 한국안전학회지
    • /
    • 제22권1호
    • /
    • pp.24-29
    • /
    • 2007
  • The effectiveness of a UV(ultra violet) disinfection system depends on the characteristics of the waste water, flow conditions, the intensity of UV radiation, the amount of time the microorganisms are exposed to the radiation, and the reactor configuration. The wast water flow conditions are important factors in the design of UV disinfection system from the point of enhancement view of UV disinfection. The turbulent energy intensity in the wake by the vortex shedding are effective for UV radiation. Therewith the effectiveness of vortex generator is considered as a enhancement of UV disinfection. The experimental results presented give important evidences and explain that it is possible to predict UV disinfection performance based on flow experiments. An experimental investigation of two types of the vortex generator is presented. The qualitative and quantitative evaluations of the wake are made by flow visualization using smoke wire method and the measurement of vortex frequencies in the wind tunnel. From the experiment, following results were obtained that the delta wing type vortex generator is more effective than circular type because of the higher vortex frequencies and the smaller drag.

방해기류 존재시 추적자 가스법을 이용한 푸쉬풀 후드 효율 평가 (Evaluation of Capture Efficiencies of Push-Pull Hood Systems by Trace Gas Method under the Presence of Some Cross-draft)

  • 김태형;하현철;강호경
    • 한국산업보건학회지
    • /
    • 제16권3호
    • /
    • pp.290-301
    • /
    • 2006
  • A push pull hood system is frequently applied to control contaminants evaporated from an open surface tank. Efficiency of push pull hood system is affected by various parameters, such as, cross draft, vessel shapes, tank surface area, liquid temperature. A previous work assisted by flow visualization technique qualitatively showed that a strong cross draft blown from the pull hood to push slot could destroy a stable wall-jet on the surface of tank, resulting in the abrupt escape of smoke from the surface. In this study, the tracer gas method was applied to determine the effect of cross-draft on the capture efficiency qualitatively. A new concept of capture efficiency was introduced, that is, linear efficiency. This can be determined by measuring the mass of tracer gas in the duct of pull hood while the linear tracer source is in between push slot and pull hood. By traversing the linear tracer source from the push slot to the pull hood, it can be found where the contaminant is escaped from the tank. Total capture efficiency can be determined by averaging the linear efficiencies. Under the condition of cross-draft velocities of 0, 0.4, 0.75, 1.05 and 1.47m/s, total capture efficiencies were measured as 97.6, 95.4, 94.6, 92.7 and 70.5% respectively. The abrupt reduction of efficiency with cross-draft velocity of 1.47m/s was due to the destruction of tank surface wall-jet by the counter-current cross-draft. The same phenomenon was observed in the previous flow visualization study. As an alternative to overcome this abrupt efficiency drop, the 20% increase of hood flow rates was tested, resulting in 20% efficiency increase.

PIV measurement of oscillatory flow in a micro-channel as a bronchiole model

  • LEE Won-je;KAWAHASHI Massaki;HIRAHARA Hiroyuki
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2004년도 Proceedings of 2004 Korea-Japan Joint Seminar on Particle Image Velocimetry
    • /
    • pp.125-134
    • /
    • 2004
  • The improvement of artificial respiration method has brought about the decrease in mortality of pulmonary diseases patients. Various respiratory curative methods, inclusive of HFOV (High Frequency Oscillatory Ventilation), have been developed for more effectual and less harmful management of acute respiratory failure. However, the mechanism of gas transfer and diffusion in a bronchiole has not yet been clarified in detail. As a first approach to the problem, we measured oscillatory flows in a Y-shaped micro-channels as bronchiole model by micro Particle Image Velocimetry(micro PIV). In order to establish the fundamental technique of PIV measurements on oscillatory air flow in a micro-channel, we used about 500-nm-diameter incense smoke particles, a diode laser, a high speed camera including an objective lens, and a HFOV, which is effective technique for medical care of pulmonary disease patients, especially, infants. The bronchiole model size is that parent tube is $500\{mu}m$ width and $500\{mu}m$ depth, and daughter tubes are $450\{mu}m$ width and $500\{mu}m$ depth. From this study made on the phenomenon of fluid in micro size bronchus branch of a lung, we succeeded to get time series velocity distribution in a micro scale bronchial mode. The experimental results of velocity distribution changing with time obtained by micro PIV can give fundamental knowledge on oscillatory airflow in micro-channel.

  • PDF

반원형 리블렛 상부 난류경계층의 유동 구조 연구 (Study on Flow Structure of Turbulent Boundary Layer Over Semi-Circular Riblets)

  • 이상현;이상준
    • 대한기계학회논문집B
    • /
    • 제23권7호
    • /
    • pp.937-944
    • /
    • 1999
  • The near-wall flow structures of turbulent boundary layer over riblets having semi-circular grooves were investigated experimentally for the drag decreasing ($s^+=25.2$) and drag increasing ($s^+=40.6$) cases. The field of view used for tho velocity field measurement was $6.75{\times}6.75mm^2$ in physical dimension, containing two grooves. One thousand instantaneous velocity fields over the riblets were extracted for each case of drag increase and decrease. For comparison, five hundreds instantaneous velocity fields over a smooth flat plate were also obtained under the same flow conditions. To see the global flow structure qualitatively, the flow visualization was also performed using the synchronized smoke-wire technique. For the drag decreasing case ($s^+=25.2$), most of the streamwise vortices stay above the riblets, interacting with the riblet tips. The high-speed in-rush flow toward the riblet surface rarely influences the flow inside tho riblet valleys submerged in the viscous sublayer. The riblet tips seem to impede the spanwise movement of the longitudinal vortices and induce secondary vortices. The turbulent kinetic energy in the riblet valley is sufficiently small to compensate the increased wetted area of the riblets. In addition, in the logarithmic region, the turbulent kinetic energy are small or almost equal to that of a smooth flat plato. For the drag increasing case ($s^+=40.6$), however, the streamwise vortices move into the riblet valley freely, interacting directly with the riblet inner surface. The penetration of the high-speed in-rush flow on the riblets increases tho skin-friction. The turbulent kinetic energy is increased in the riblet valleys and even in the outer region compared to that over a flat plate.

노즐출구에 삽입된 다중관에 의한 충돌제트의 유동 및 열전달 특성 (Flow and Heat Transfer Characteristics of a Multi-Tube Inserted Impinging Jet)

  • 황상동;조형희
    • 대한기계학회논문집B
    • /
    • 제28권2호
    • /
    • pp.135-145
    • /
    • 2004
  • An experimental study is conducted to investigate the flow and heat transfer characteristics of a multi-tube inserted impinging jet. Four different multi-tube devices are tested for various nozzle-to-plate distance. Flow visualization by smoke-wire method and velocity measurements using a hot-wire anemometer are applied to analyze the flow characteristics of the multi-tube insert impinging jet. The local heat transfer coefficients of the multi-tube inserted impinging jet on the impingement surface are measured and the results are compared to those of the conventional jet. In multi-tube inserted system the multi-tube length plays an important role in the flow and heat transfer characteristics of the jet flow. With multi-tube insert of I3d4 and I6d4 which has relatively longer tube length than the multi-tube-exit of I3d1 and I6d1, the flow maintains its increased velocity far downstream due to interaction between adjacent flows. For the small H/D of 4, the local heat transfer coefficients of multi-tube inserted impinging jet are much higher than those of the conventional jet because the flow has higher velocity and turbulent intensity by the use of the multi-tube device. At large gap distance of H/D=12, also higher heat transfer rates are obtained by installing multi-tube insert except multi-tube insert of I3d1.

기본교란 및 분수조화교란을 이용한 원형제트에서의 보텍스병합 (Vortex pairing in an axisymmetric jet using fundamental and subharmonic forcing)

  • 조성권;유정열;최해천
    • 대한기계학회논문집B
    • /
    • 제21권10호
    • /
    • pp.1350-1362
    • /
    • 1997
  • An experimental study has been performed on vortex pairing under fundamental and subharmonic forcing with controlled initial phase differences through hot-wire measurements and a multi-smoke wire flow visualization. For the range of St$_{D}$ < 0.6, vortex pairing was controlled by means of fundamental and subharmonic forcing with varying initial phase differences. Much larger mixing rate was achieved by two-frequency forcing with a proper phase difference than one frequency forcing. As St$_{D}$ decreased, vortex pairing was limited to a narrow region of the initial phase difference between two disturbances and higher amplitudes of the fundamental and its subharmonic at the nozzle exit were required for more stable pairing. As the amplitude of the subharmonic at the nozzle exit increased for fixed St$_{D}$ and fundamental amplitude, the distribution of the subharmonic mode against the variation of the initial phase difference changed from a sine function form into a cusp-like form. Thus, vortex pairing can be controlled more precisely for the former case. For St$_{D}$ > 0.6, non-pairing advection of vortices due to the improper phase difference was sometimes observed in several fundamental forcing amplitudes when only the fundamental was applied. However, when its subharmonic was added, vortex pairing readily occurred. As the initial amplitude of this subharmonic increased, the position of vortex pairing moved upstream. This was thought to be due to the fact that the variation of the initial phase difference between the fundamental and its subharmonic has less effects on vortex pairing in the region of fundamental-only vortex pairing.pairing.

Study on the Unsteady Wakes Past a Square Cylinder near a Wall

  • Kim Tae Yoon;Lee Bo Sung;Lee Dong Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제19권5호
    • /
    • pp.1169-1181
    • /
    • 2005
  • Experimental and numerical studies on the unsteady wake field behind a square cylinder near a wall were conducted to find out how the vortex shedding mechanism is correlated with gap flow. The computations were performed by solving unsteady 2-D Incompressible Reynolds Averaged Navier-Stokes equations with a newly developed ${\epsilon}-SST$ turbulence model for more accurate prediction of large separated flows. Through spectral analysis and the smoke wire flow visualization, it was discovered that velocity profiles in a gap region have strong influences on the formation of vortex shedding behind a square cylinder near a wall. From these results, Strouhal number distributions could be found, where the transition region of the Strouhal number was at $G/D=0.5{\sim}0.7$ above the critical gap height. The primary and minor shedding frequencies measured in this region were affected by the interaction between the upper and the lower separated shear layer, and minor shedding frequency was due to the separation bubble on the wall. It was also observed that the position (y/G) and the magnitude of maximum average velocity $(u/u_{\infty})$ in the gap region affect the regular vortex shedding as the gap height increases.

O-ring을 이용한 원주의 항력감소에 관한 실험적 연구 (Drag Reduction of a Circular Cylinder With O-rings)

  • 임희창;이상준
    • 대한기계학회논문집B
    • /
    • 제27권8호
    • /
    • pp.1174-1181
    • /
    • 2003
  • The flow around a circular cylinder was controlled by attaching O-rings to reduce drag force acting on the cylinder. Four experimental models were tested in this study; one smooth cylinder of diameter D (D=60mm) and three cylinders fitted with O-rings of diameters d=0.0167 D, 0.05D and 0.067 D with pitches of PPD=2D, 1D, 0.5D and 0.25D. The drag force, mean velocity and turbulence Intensity profiles in the near wake behind the cylinders were measured for Reynolds numbers based on the cylinder diameter in the range of Re$_{D}$=7.8$\times$10$^3$~1.2$\times$10$^{5}$ . At Re$_{D}$=1.2$\times$10$^{5}$ , the cylinder fitted with O-rings of d=0.0167D in a pitch interval of 0.25D shows the maximum drag reduction of about 5.4%, compared that with the smooth cylinder. The drag reduction effect of O-rings of d=0.067D is not so high. For O-ring circulars, as the Reynolds number increases, the peak location of turbulence intensity shifts downstream and the peak magnitude is decreased. Flow field around the cylinders was visualized using a smoke-wire technique to see the flow structure qualitatively. The size of vortices and vortex formation region formed behind the O-ring cylinders are smaller, compared with the smooth cylinder.der.