• Title/Summary/Keyword: Smoke Emission

Search Result 247, Processing Time 0.04 seconds

The Emission Characteristics on Blending Ratios of Biodiesel Fuel and Diesel Fuel in a Common Rail Type Diesel Engine (커먼레일방식 디젤기관의 경유와 바이오디젤유의 혼합율에 따른 배기배출물 특성)

  • Choi, S.H.;Oh, Y.T.;Byeon, J.W.
    • Journal of Biosystems Engineering
    • /
    • v.34 no.2
    • /
    • pp.77-81
    • /
    • 2009
  • Our nature is facing with serious problems related to the air pollution from automobiles in these days. Specially, the exhaust emissions from the diesel engine are recognized as a main cause influencing the environment severly. In this study, the potential possibility of biodiesel fuel is investigated as an alternative fuel for a naturally aspirated CRDi type diesel engine. The smoke emission of biodiesel fuel 5 vol-% was reduced by approximately 40% at 3000 rpm and full load in comparison with diesel fuel. On the other hand, the power, torque and brake specific energy consumption didn't show significant differences. NOx emission of biodiesel fuel was, however, increased compared with commercial diesel fuel.

A study on performance and smoke emission characteristics by blending low purity methanol in a DI diesel engine with the EGR rates of 0, 12.8 and 16.5%

  • Syaiful, Syaiful;Bae, Myung-Whan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.701-710
    • /
    • 2013
  • The purpose of this study is to investigate experimentally the effect of low purity methanol (LPM) on performance and smoke emission characteristics by using a four-cycle, four-cylinder, water-cooled, direct injection diesel engine with EGR system. The experiments are performed by the change of engine load in the engine load ranges of 25 to 100% with an interval of 25% under the constant engine speed of 2000 rpm. The LPM in the fuel blends contained 24.88% water by volume. The blended fuel ratios of diesel oil to LPM are maintained at 100/0, 95/5, 90/10 and 85/15% on the volume basis. In this paper, EGR rates are varied in three conditions of 0, 12.8 and 16.5%. The result shows that the brake power of a blended fuel with 15% LPM is reduced more 11.1% than that of the neat diesel oil at the full load with the EGR rate of 16.5%. At this condition, also, the brake specific fuel consumption (BSFC) is increased by 3.2%, the exhaust gas temperature is decreased by 10.7%, the smoke opacity is decreased by 18.7% and the brake thermal efficiency is increased by 7.3%. The sharp reduction of smoke opacity for a blended fuel with the LPM content of 15% at the full load without EGR system is observed by 68.4% compared with that of the neat diesel oil due to the high oxygen content of LPM.

A Study on Evaluating a Representative Smoke Value from an Inspection Vehicle Using Integration Method over a Cycle of Free-Acceleration Test Mode (무부하 급가속 측정 사이클로 운전되는 검사 대상 디젤 차량으로부터 배출되는 매연값 적분에 의한 차량 매연 대표값 특성 연구)

  • Lee, Choong Hoon
    • Journal of ILASS-Korea
    • /
    • v.18 no.3
    • /
    • pp.132-139
    • /
    • 2013
  • Smoke emissions from light duty diesel vehicles were measured using light extinction method with the free acceleration test mode. The smoke emissions for each measurement cycle of the free acceleration method showed large variations according to driver's pedal pushing pattern. The smoke values for each measurement cycle initially increased and reach a peak value. Integration of the smoke emissions with time for each measurement cycle was performed to get a representative smoke value which was obtained by averaging the integrated results. Two kinds of integration time range were used. One is range over the whole measurement cycle of the free acceleration method. The other is only the acceleration range in the measurement cycle. Overall, variation of the representative smoke values obtained by the integration method was reduced comparing to the traditional representative smoke value which was obtained from a peak smoke value over the measurement cycle. Ten vehicles of the same model with 2.5 liter diesel engines, and seven vehicles of the same model with 2.7 liter diesel engines, were tested using the free acceleration test method.

An Effect of Wet Type Air Filter in Heavy-Duty Diesel Engine (대형디젤기관에 미치는 습윤식 에어 필터의 영향)

  • 김미수;나완용;오용석
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.3
    • /
    • pp.98-103
    • /
    • 2004
  • Diesel engine offers superior fuel consumption than gasoline engine of equivalent capacity. For this reason, diesel engines are widely used in heavy duty transport applications. Specially, it has been many years that exhaust gases from gasoline automobile rather than from diesel is the major object concerned by Korea and other countries, and it is strongly required on the reduction techniques on harmful NOx, Soot, CO, He. Thus, this paper focused on the emission reduction and target for this paper is heavy-duty diesel engine equipped with power filter such as wet type air cleaner. In this paper, the performance, exhaust emissions(CO, THC, NOx, Soot) and noise of heavy-duty diesel engine were measured at maximum load condition and the range of 1,000∼2,200rpm. The smoke was measured at FAS(Free Accel Smoke) test mode.

The Evaluation on Smoke Reduction by Natural Gas Dual Fuel Engine for City Bus (매연저감을 위한 천연가스 Dual-Fuel 엔진의 시내버스 적용평가)

  • 엄명도;조강래;오용석;한영출
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.3
    • /
    • pp.215-220
    • /
    • 1997
  • CNG dual fuel engine for heavy duty diesel engine developed by AFS International in Canada has been equipped to a Korean city bus engine and tested to compare the engine performance and the emission characteristics with the existing diesel fueled engine. Also the dual-fuel engine was applied to the city bus for road test. The results are summarized as follows. Performance optimization has been carried out to have engine power equivalent to or better than the diesel fueled engine. Smoke is decreased by 85% by Korean smoke 3 mode test. By 13 mode test CO is increased by 453% and THC is increased by 2, 086%. NOx is decreased by 7% in laboratory. D-13 test mode was changed in 1996 Korean regulation. Even though THC is increased very much, it's not too serious problem since CO and HC emission of diesel engine is very little compared to gasoline engine and more than 75% of THC is CH$_4$. But the reduction technologies of CO and HC has to be considered.

  • PDF

Effects of the Smoke Reduction of Diesel Engine Operated with Ultrasonically Reformed Fuel (디젤기관의 매연저감에 미치는 초음파 영향)

  • Lee, Byoung-Oh;Kim, Yong-Guk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.88-94
    • /
    • 2010
  • In this paper, the effect of the ultrasonic energy on the diesel engine's smoke reduction has been investigated for indirect injection diesel engine. The smoke concentration of the ultrasonically reformed diesel fuel was reduced remarkably in comparison with conventional diesel fuel. And in-cylinder pressure, heat release rate and mass fraction burned was improved but combustion duration was decreased. However, The combustion durations and the smoke concentrations of both diesel fuels were proportional to the increases of engine loads. Also, When the combustion duration has been increasing, the smoke emission has been augmenting in the shape of the exponential functions.

Improving Diesel Car Smoke Measurement Probe Performance of Diesel Cars Using Hole Position (홀 위치에 따른 디젤자동차 매연 측정프로브 성능 개선 연구)

  • Chae, Il-Seok;Kim, Eun-Ji;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.29-35
    • /
    • 2020
  • Car inspection systems are regularly carried out by the state to ensure the safety and emission status of cars, thereby improving the safety and quality of life by reducing fine dust and greenhouse gases that are the main culprits of vehicle defects and air pollution. These automobile inspections are largely divided into either regular or comprehensive inspections. This study analyzed the smoke measuring probes used in the lug - down 3 mode. In the previously issued paper "Improvement of Soot Probe Efficiency for Automotive Emission Measurement," an improved smoke measurement probe(B) improved on the problems that arise from the current smoke measurement probe (A). In this study, a technique that can improve the probe's inhalation efficiency over the improved (B) probes was applied to probes (C). Probe (C) involves a structure designed close to the center of the circumference of the exhaust pipe, and the suction efficiency was improved by adding a variable center unit.

An Experimental Study on Exhaust Emission Characteristics by Various Oxygenated Additives in Diesel Engine (디젤기관에서 다종 함산소연료 첨가에 의한 배기배출물 특성에 관한 실험적 연구)

  • 오영택;최승훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.101-110
    • /
    • 2002
  • In this paper, the effects of oxygen component in blended fuel on the exhaust emissions have been investigated far direct injection diesel engine. It was tested to estimate change of engine performance and exhaust emission characteristics for th? commercial diesel fuel and oxygenated blended fuels which have three kinds of fuels and various mixed rates. And, it was tried to analyze not only total hydrocarbon but individual hydrocarbons(C$_1$∼ C$\_$6/) in exhaust gases using gas chromatography to seek the reason far remarkable reduction of smoke emission on various oxygenated fuels. This study carried out by comparing the chromatogram with diesel fuel and diesel fuel blended DGM(diethylene glycol dimethyl ether), MTBE(methyl tart-butyl ether) and EGBE(ethylene glycol mono-n-butyl ether). The results of this study show that individual hydrocarbons as well as total hydrocarbon of oxygenated fuel are reduced remarkably compared with commercial diesel fuel.

An Experimental Study on the Emission Reduction of Duel-Fuel Engine by CNG (디젤기관에서 CNG혼소에 의한 배출가스 저감에 관한 실험적 연구)

  • 한영출;엄명도;오용석;이성욱
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.213-218
    • /
    • 1997
  • CNG dual fuel engine for heavy duty diesel engine has been equipped to a Korean bus engine and tested to compare th engine performance and the emission characteristics with the existing diesel fueled engine. The results are summarized as follows. Diesel fueled engine has the fuel injection timing of BTDC17°. The injection timing of CNG modified engine is retarded to BTDC14° for reduction of NOx. Performance optimization has been carried out to have engine power equivalent to or better than the diesel fueled engine. Smoke is decreased by 85% by Korean smoke 3 mode test. By 6 mode test CO is increased by 313% and THC is increased by 1407%. NOx is decreased by 27%. Even though THC is increased very much, it's not too serious problem since CO and THC emission of diesel engine are very little compared to gasoline engine and THC don't give bad effect on human health. But the reduction technologies of CO and THC need to be considered.

  • PDF

An Experimental Study on the Combustion Characteristics with Fuel Injection System in the Diesel Engine (디젤엔진의 연료분사계가 연소특성에 미치는 영향에 관한 실험적 연구)

  • 윤천한;김경훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1244-1249
    • /
    • 2001
  • The characteristics of engine performance with fuel injection system in D.I. diesel engine were studied in this paper A fuel injection system has an important role in the performance and emission gas in a diesel engine. In this paper, an experimental study has been performed to verify the effect of the performance and the emission gas with the factors such as diameters of an injection nozz1e hole, diameters of an injection pipe and injection timing in the fuel injection system. The authors have obtained the results that optimizing the factors of fuel injection system is siginificant to enhance the performance of the engine system and consumption ratio of fuel, smoke, and NOx.

  • PDF