In this study, we propose an automated smile analysis system for self smile training. The proposed system detects the face area from the input image with the AdaBoost algorithm, followed by identifying facial features based on the face shape model generated by using an ASM(active shpae model). Once facial features are identified, the lip line and teeth area necessary for smile analysis are detected. It is necessary to judge the relationship between the lip line and teeth for smiling degree analysis, and to this end, the second differentiation of the teeth image is carried out, and then individual the teeth areas are identified by means of histogram projection on the vertical axis and horizontal axis. An analysis of the lip line and individual the teeth areas allows for an automated analysis of smiling degree of users, enabling users to check their smiling degree on a real time basis. The developed system in this study exhibited an error of 8.6% or below, compared to previous smile analysis results released by dental clinics for smile training, and it is expected to be used directly by users for smile training.
Journal of the Korea Society of Computer and Information
/
v.15
no.4
/
pp.47-55
/
2010
In this paper, we proposed a recognition system of smile facial expression for smile treatment training. The proposed system detects face candidate regions by using Haar-like features from camera images. After that, it verifies if the detected face candidate region is a face or non-face by using SVM(Support Vector Machine) classification. For the detected face image, it applies illumination normalization based on histogram matching in order to minimize the effect of illumination change. In the facial expression recognition step, it computes facial feature vector by using PCA(Principal Component Analysis) and recognizes smile expression by using a multilayer perceptron artificial network. The proposed system let the user train smile expression by recognizing the user's smile expression in real-time and displaying the amount of smile expression. Experimental result show that the proposed system improve the correct recognition rate by using face region verification based on SVM and using illumination normalization based on histogram matching.
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.10
/
pp.1423-1431
/
2022
Volatility is one of the variables that the Black-Scholes model requires for option pricing. It is an unknown variable at the present time, however, since the option price can be observed in the market, implied volatility can be derived from the price of an option at any given point in time and can represent the market's expectation of future volatility. Although volatility in the Black-Scholes model is constant, when calculating implied volatility, it is common to observe a volatility smile which shows that the implied volatility is different depending on the strike prices. We implement supervised learning to target implied volatility by adding V-KOSPI to ease volatility smile. We examine the estimation performance of KOSPI200 index options' implied volatility using various Machine Learning algorithms such as Linear Regression, Tree, Support Vector Machine, KNN and Deep Neural Network. The training accuracy was the highest(99.9%) in Decision Tree model and test accuracy was the highest(96.9%) in Random Forest model.
Ahmed, Tanveer;Memon, Sajjad Ali;Hussain, Saqib;Tanwani, Amer;Sadat, Ahmed
International Journal of Computer Science & Network Security
/
v.21
no.8
/
pp.369-376
/
2021
One of the most active areas of research in the field of affective computing and signal processing is emotion recognition. This paper proposes emotion recognition of low-resource (Sindhi) language. This work's uniqueness is that it examines the emotions of languages for which there is currently no publicly accessible dataset. The proposed effort has provided a dataset named MAVDESS (Mehran Audio-Visual Dataset Mehran Audio-Visual Database of Emotional Speech in Sindhi) for the academic community of a significant Sindhi language that is mainly spoken in Pakistan; however, no generic data for such languages is accessible in machine learning except few. Furthermore, the analysis of various emotions of Sindhi language in MAVDESS has been carried out to annotate the emotions using line features such as pitch, volume, and base, as well as toolkits such as OpenSmile, Scikit-Learn, and some important classification schemes such as LR, SVC, DT, and KNN, which will be further classified and computed to the machine via Python language for training a machine. Meanwhile, the dataset can be accessed in future via https://doi.org/10.5281/zenodo.5213073.
KIPS Transactions on Software and Data Engineering
/
v.11
no.1
/
pp.11-18
/
2022
De novo drug design is the process of developing new drugs that can interact with biological targets such as protein receptors. Traditional process of de novo drug design consists of drug candidate discovery and drug development, but it requires a long time of more than 10 years to develop a new drug. Deep learning-based methods are being studied to shorten this period and efficiently find chemical compounds for new drug candidates. Many existing deep learning-based drug design models utilize recurrent neural networks to generate a chemical entity represented by SMILES strings, but due to the disadvantages of the recurrent networks, such as slow training speed and poor understanding of complex molecular formula rules, there is room for improvement. To overcome these shortcomings, we propose a deep learning model for SMILES string generation using variational autoencoders with self-attention mechanism. Our proposed model decreased the training time by 1/26 compared to the latest drug design model, as well as generated valid SMILES more effectively.
Some female college students have to recognize and understand the actual conditions of the tooth bleaching, and effective consultation and training to provide basic data for the purpose of investigation. this study made a survey about recognize and understand the actual conditions of the tooth bleaching and oral health knowledge and generalization methods for 649 female college student in Daejeon and Jeonbuk areas during the period between March. 15 and April. 10,2008. The results were as follows: 1. Tooth Status was found low, self-discontent respondents Status 44.2% and average 31.1%, self-contentment were 14.8%. Tooth color was average respondents were 69.8%, yellow 29.0%, White 1.7% (p=0.001, p=0.030). 2. Tooth bleaching experience has not experienced the most the military was 86.4%, to the desired Tooth bleaching for the external beauty 44.2%, confidence of smile time 37.5%. self-discontent 10.7%(p=0.000, p=0.000). 3. Tooth health status satisfaction was dental hygiene students higher than non dental hygiene, and scaling knowledge of the Tooth bleaching effect was non dental hygiene higher than non dental hygiene(p=0.039, p=0.000). 4. General knowledge for Tooth bleaching was found high 96.1%, as for the recognition route, 55.6% were through broadcast medium(p=0.025, p=0.000). 5. Medical institution chosen for Tooth bleaching treatment method appears the most preferred by 79.9% to the dental hospital dental clinic. 6. Important to consider that the choice of Tooth bleaching was Tooth bleaching duration of 37.1% cost 33%, And when Tooth bleaching hoped to be long-lasting. In this research the high recognized of Tooth bleaching treatment, but very low Tooth bleaching experience female college students for the Tooth bleaching had the wrong information. Therefore, Tooth bleaching treatment and counseling that can be used to development and education were required to provide the correct information.
Purpose - Non-verbal Communication with customers in restaurant business can play an important role because it affects customer behavior and attitudes as a means to develop and maintain long-term relationships with customers. The purpose of this study is to analyze the effect of non-verbal communication with customers and the effect of the influence on customer satisfaction, trust, and revisit intention. Research design, data, methodology - In order to verify the research models and hypotheses of this study, questions were prepared for each variable and data were collected through questionnaires. The questionnaire survey was conducted from March 27, 2018 to April 17, 2018, for those who agreed with the citizens of the Jeju area who visited the restaurant recently. 50 out of 100 were conducted by internet survey and 50 were surveyed. Thus, a total of 100 responses were used using structural equation modeling with Smartpls 3.0. Results - The results of the study are as follows. First, non-verbal communication has a significant impact on customer emotion. Second customer emotion have a significant impact on customer trust and satisfaction. Third, Customer satisfaction had positive a significant effect on revisit intention. Fourth, Customer trust had positive a significant effect on revisit intention. Conclusions - The implications of this study are following as: The food service company should continuously provide non-verbal communication training to employees so that they can respond to customers with the right attitude and bright smile. In particular, in the case of restaurant franchises, customer response manuals should be created and distributed to the franchisees, and a regular training program for the franchisees should be implemented to provide the same service to the customer. Second, CEOs should have to worry about what kind of experience he or she has left since leaving the store. It is also necessary to constantly look at what customers experience in their stores or in their brands, and what emotions they form through their experiences. Third, the more satisfied or trusted customers are formed through the service of the employee, the more loyal the restaurant business will be, and the more likely it is to make continuous revisit and positive word-of-mouth activities..
Journal of Dental Rehabilitation and Applied Science
/
v.39
no.4
/
pp.237-249
/
2023
Orofacial dystonia is a neuromotor disorder that causes irregular or repetitive movements of the face, lips, tongue, and jaw involuntarily, also called tic disorder. Edentulous patients with these symptoms experience functional and aesthetic problems, including difficulty using complete dentures, speech and swallowing difficulties, and orofacial pain. In this case, for a patient with orofacial dystonia who experienced complete edentulism at a relatively young age, restorative treatment was performed with a maxillary complete denture with bilateral posterior zirconia occlusal surfaces and a mandibular implant-supported fixed prosthesis, and continuous smile training was performed. The aim was to improve the aesthetics of facial muscles. As a result of the treatment, the patient was very satisfied with not only improved chewing function and aesthetics, but also regained psychological stability and was able to lead a normal daily life, so we would like to report this.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.