• Title/Summary/Keyword: Smectite

Search Result 206, Processing Time 0.029 seconds

Study on the Geochemical Weathering Process of Sandstones and Mudstones in Pohang Basin at CO2 Storage Condition (지중저장 조건에서 초임계CO2에 의한 포항분지 사암과 이암의 지화학적 풍화반응 연구)

  • Park, Jinyoung;Lee, Minhee;Wang, Sookyun
    • Economic and Environmental Geology
    • /
    • v.46 no.3
    • /
    • pp.221-234
    • /
    • 2013
  • Laboratory experiments for the reaction with supercritical $CO_2$ under the $CO_2$ sequestration condition were performed to investigate the mineralogical and geochemical weathering process of the sandstones and mudstones in the Pohang basin. To simulate the supercritical $CO_2$-rock-groundwater reaction, rock samples used in the experiment were pulverized and the high pressurized cell (200 ml of capacity) was filled with 100 ml of groundwater and 30 g of powdered rock samples. The void space of the high pressurized cell was saturated with the supercritical $CO_2$ and maintained at 100 bar and $50^{\circ}C$ for 60 days. The changes of mineralogical and geochemical properties of rocks were measured by using XRD (X-Ray Diffractometer) and BET (Brunauer-Emmett-Teller). Concentrations of dissolved cations in groundwater were also measured for 60 days of the supercritical $CO_2$-rock-groundwater reaction. Results of XRD analyses indicated that the proportion of plagioclase and K-feldspar in the sandstone decreased and the proportion of illite, pyrite and smectite increased during the reaction. In the case of mudstone, the proportion of illite and kaolinite and cabonate-fluorapatite increased during the reaction. Concentration of $Ca^{2+}$ and $Na^+$ dissolved in groundwater increased during the reaction, suggesting that calcite and feldspars of the sandstone and mudstone would be significantly dissolved when it contacts with supercritical $CO_2$ and groundwater at $CO_2$ sequestration sites in Pohang basin. The average specific surface area of sandstone and mudstone using BET analysis increased from $27.3m^2/g$ and $19.6m^2/g$ to $28.6m^2/g$ and $26.6m^2/g$, respectively, and the average size of micro scale void spaces for the sandstone and mudstone decreased over 60 days reaction, resulting in the increase of micro pore spaces of rocks by the dissolution. Results suggested that the injection of supercritical $CO_2$ in Pohang basin would affect the physical property change of rocks and also $CO_2$ storage capacity in Pohang basin.

Geochemical Characterization of Rock-Water Interaction in Groundwater at the KURT Site (물 암석 반응을 고려한 KURT 지하수의 지구화학적 특성)

  • Ryu, Ji-Hun;Kwon, Jang-Soon;Kim, Geon-Young;Koh, Yong-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.189-197
    • /
    • 2012
  • Geochemical composition of fracture filling minerals and groundwater was investigated to characterize geochemical characteristics of groundwater system at the KURT site. Minerals such as calcite, illite, laumontite, chlorite, epidote, montmorillonite, and kaolinite, as well as I/S mixed layer minerals were detected in the minerals extracted from the fracture surfaces of the core samples. The groundwater from the DB-1, YS-1 and YS-4 boreholes showed alkaline conditions with pH of higher than 8. The electrical conductivity (EC) values of the groundwater samples were around $200{\mu}S/cm$, except for the YS-1 borehole. Dissolved oxygen was almost zero in the DB-1 borehole indicating highly reduced conditions. The Cl- concentration was estimated around 5 mg/L and showed homogeneous distribution along depths at the KURT site. It might indicate the mixing between shallow groundwater and deep groundwater. The shallow groundwater from boreholes showed $Ca-HCO_3$ type, whereas deep groundwater below 300 m from the surface indicated $Na-HCO_3$ type. The isotopic values observed in the groundwater ranged from -10.4 to -8.2‰ for ${\delta}^{18}O$ and from -71.3 to -55.0‰for ${\delta}D$. In addition, the isotope-depleted water contained higher fluoride concentration. The oxygen and hydrogen isotopic values of deep groundwater were more depleted compared to the shallow groundwater. The results from age dating analysis using $^{14}C$ indicated relatively younger (2000~6000yr old) groundwater compared to other european granitic groundwaters such as Stripa (Sweden).

Changes in Provenance and Transport Process of Fine Sediments in Central South Sea Mud (남해중앙니질대 세립질 퇴적물의 기원지 및 이동과정 변화)

  • Lee, Hong Geum;Park, Won Young;Koo, Hyo Jin;Choi, Jae Yeong;Jang, Jeong Kyu;Cho, Hyen Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.235-247
    • /
    • 2019
  • The Central South Sea Mud (CSSM), developed in the Seomjin River estuary, is known to be supplied with sediments from Heuksan Mud Belt (HMB) and Seomjin River. However, in order to form a mud belt, more sediments must be supplied than supplied in the above areas. Therefore, research on additional sources should be conducted. In this study, clay minerals, major elements analyzes were performed on cores 16PCT-GC01 and 16PCT-GC03 in order to investigate the transition in the provenance and transport pathway of sediments in CSSM. The Huanghe sediments are characterized by higher smectite and the Changjiang sediments are characterized by higher illite. Korean river sediments contain more kaolinite and chlorite than those of chinese rivers. Korean river sediments have higher Al, Fe, K concentraion than Chinese river sediments and Chinese rivers have higher Ca, Mg, Na than those of Korean rivers. Therefore, clay minerals and major elements can be a useful indicator for provenance. Based on our results, CSSM can be divided into three sediment units. Unit 3, which corresponds to the lowstand stage, is interpreted that sediments from Huanghe were supplied to the study area by coastal or tidal currents. Unit 2, which corresponds to the transgressive stage, is interpreted to have a weaker Huanghe effect and a stronger Changjiang and Korean rivers effect. Unit 1, which corresponds to the highstand stage when the sea level is the same as present and current circulation system is formed, is interpreted that sediments from Changjiang and Korean rivers are supplied to the research area through the current.

Mineralogy and Geochemistry of Quaternary Fault Gouges in the Southeastern Korean Peninsula (한반도 동남부 제4기 단층 비지의 광물학적 및 지구화학적 연구)

  • 손승완;장태우;김영규
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.85-94
    • /
    • 2002
  • XRF, XRD, EPMA have been used to investigate microstructures and mineralogical changes caused by the faulting and fluids associated with faulting in the Quaternary fault gouge zones at the Sangchon, Ipsil and Wangsan faults located at the southeastern part of the Korean Peninsula. The chemical compositions of faulted rocks and protoliths analyzed by XRF show that the fault gouges are relatively enriched in TiO$_2$, P$_2$O$_{5}$, MgO, and Fe$_2$O$_3$) compared with protoliths, indicating that the fluids associated with faulting were highly activated. XRD results show that the fault gouges predominantly consist of quartz, feldspar, calcite and clay minerals. Clay minerals formed in the gouge zones are mainly composed of smectite characterized by a dioctahedral sheet. Based on EPMA analyses various kinds of sulfide, carbonate, phosphate minerals were identified in the gouge zones and protoliths. Xenotime of grey fault gouge of the Sangchon fault and sulfide minerals of contact andesitic rock of Ipsil fault and contact grey andesitic rock of Wangsan fault were probably formed by inflow of hydrothermal solution associated with faulting prior to the Quaternary. Carbonate minerals of contact andesitic rock and gouge zone of the Ipsil fault were formed by inflow of fluid associated with faulting prior to the Quaternary. They are heavily fractured and have reaction rim on their edge, indicating that faultings and inflow of fluids were highly activated after carbonate minerals were formed. Calcites of Wangsan fault seemed to be formed in syntectonic or posttectonic Quaternary faulting.g.

Hydrogeochemical Research on the Characteristic of Chemical Weathering in a Granitic Gatchment (水文化學的 資料를 통한 花崗岩質 流域의 化學的 風化特性에 關한 硏究)

  • Park, Soo-Jin
    • Journal of the Korean Geographical Society
    • /
    • v.28 no.1
    • /
    • pp.1-15
    • /
    • 1993
  • This research aims to investigate some respects of chemical weathering processes, espcially the amount of solute leaching, formation of clay minerals, and the chemical weathering rate of granite rocks under present climatic conditions. For this purpose, I investigated geochemical mass balance in a small catchment and the mineralogical composition of weathered bedrocks including clay mineral assemblages at four res-pective sites along one slope. The geochemical mass blance for major elements of rock forming minerals was calculated from precipitation and streamwater data which are measured every week for one year. The study area is a climatically and litholo-gically homogeneous small catchment($3.62Km^2$)in Anyang-shi, Kyounggi-do, Korea. The be-drock of this area id Anyang Granite which is composed of coarse-giained, pink-colored miner-als. Main rock forming minerals are quartz, K-Feldspar, albite, and muscovite. One of the chracteristics of this granite rock is that its amount of Ca and Mg is much lower than other granite rock. The leaching pattern in the weathering profiles is in close reltion to the geochemical mass balance. Therefore the removal or accumulation of dissolved materials shows weathering patterns of granite in the Korean peninsula. Oversupplied ions into the drainage basin were $H^+$, $K^+$, Fe, and Mn, whereas $Na^2+$, $Mg^2+$, $Ca^2+$, Si, Al and $HCO-3^{-}$ were removed from the basin by the stream. The consumption of hydrogen ion in the catchment implies the hydrolysis of minerals. The surplus of $K^+$ reflects that vegetation is in the aggravation stage, and the nutrient cycle of the forest in study area did not reach a stable state. And it can be also presumed that the accumulation of $K^+$ in the top soil is related to the surplus of $K^+$. Oversupplied Fe and Mn were presumed to accumulate in soil by forming metallic oxide and hydroxide. In the opposite, the removal of $Na^+$, Si, Al resulted from the chemical weathering of albite and biotite, and the amount of removal of $Na^+$, Si, Al reflected the weathering rate of the bedrock. But $Ca^2+$ and $Mg^2+$ in stream water were contaminated by the scattered calcareous structures over the surface. Kaolinite is a stable clay mineral under the present environment by the thermodynamical analysis of the hydrogeochemical data and Tardy's Re value. But this result was quite different from the real assemblage of clay miner-als in soil and weathered bedrock. This differ-ence can be explained by the microenvironment in the weathering profile and the seasonal variation of climatic factors. There are different clay forming environments in the stydy area and these differences originate from the seasonal variation of climate, especially the flushing rate in the weathering profile. As it can be known from the results of the analysis of thermodynamic stability and characteristics of geochemical mas balance, the climate during winter and fall, when it is characterized by the low flushing rate and high solute influx, shows the environmental characteristics to from 2:1 clay minerals, such as illite, smectite, vermiculite and mixed layer clay minerals which are formed by neoformation or transformation from the primary or secondary minerals. During the summer and spring periods, kaoli-nite is a stable forming mineral. However it should consider that the other clay minerals can transformed into kaolinite or other clay minerals, because these periods have a high flushing rte and temperature. Materials which are directly regulated by chemical weathering in the weathered bedrock are $Na^+$, Si, and Al. The leaching of Al is, however, highly restricted and used to form a clay mineral, and that of Si falls under the same category. $Na^+$ is not taked up by growing veget ation, and fixed in the weathering profile by forming secondary minerals. Therefore the budget of $Na^+$ is a good indicator for the chemical weathering rate in the study area. The amount of chemical weathering of granite rocks was about 31.31g/$m^2+$/year based on $Na^+$ estimation.

  • PDF

Geologic, Fluid Inclusion, and Sulfur Isotopic Studies of Hydrothermal Deposit in the Tanggueng District, West Java, Indonesia (인도네시아 서부자바 땅긍(Tanggueng)지역 열수광상의 지질, 유체포유물 및 황동위원소 연구)

  • Jae-Ho Lee;In-Joon Kim
    • Economic and Environmental Geology
    • /
    • v.36 no.5
    • /
    • pp.321-328
    • /
    • 2003
  • The epithermal gold and base metal deposit of the Tanggeung district of West Java consists of four major veins(Celak, Cigodobras, Cilangkap and Pasirbedil) with NS to N10$^{\circ}$∼20$^{\circ}$E and N75$^{\circ}$W strikes. The veins occur within fractures cutting the crystal and lithic tuff of Jampang Formation(Oligo-Miocene) in and around the Mt. Subang of the western Java, Indonesia. The ore mineralization is characterized by the occurrence of pyrite, sphalerite, galena, chalcopyrite, and small amounts of bornite and Fe-oxides. Hydrothermal alteration, associated with the mineralization, was dominantly silicified and enveloped by the phyllitic(sericitic), argillic and propylitic alteration containing the disseminated pyrite. Gangue minerals consist of interstratified smectite-illite, chlorite, sericite, and minor kaolinite. The presence of vapor-rich fluid inclusions in quartz veins suggests that boiling occurred locally throughout ore deposition. Fluid inclusion studies suggest that the ore fluid evolved from initial high temperatures(〓34$0^{\circ}C$) to later lower temperatures(〓19$0^{\circ}C$). Salinities range from 0.0 to 8.3 wt percent NaCl equiv. The relatively high increase in salinity(up to 8.3 wt percent NaCl equiv) might be explained by a local boiling and by a participation of magmatic fluids, supported by the sulfur isotope results. Evidence of fluid boiling suggests that the pressure decreased from 200 bars to 120 bars. This corresponds to the depths of approximately 750 to 1,200 m in a hydrothermal system that changed from lithostatic to hydrostatic conditions. Using homogenization temperatures and paragenetic constraints, the calculated $\delta$$^{34}$ S values of $H_2S$ in ore fluid are -0.2 to 1.8 permil close to the 0 permil isotopic value of magmatic sulfur.

Hydrogeochemical and Environmental Isotope Study of Groundwaters in the Pungki Area (풍기 지역 지하수의 수리지구화학 및 환경동위원소 특성 연구)

  • 윤성택;채기탁;고용권;김상렬;최병영;이병호;김성용
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.4
    • /
    • pp.177-191
    • /
    • 1998
  • For various kinds of waters including surface water, shallow groundwater (<70 m deep) and deep groundwater (500∼810 m deep) from the Pungki area, an integrated study based on hydrochemical, multivariate statistical, thermodynamic, environmental isotopic (tritium, oxygen-hydrogen, carbon and sulfur), and mass-balance approaches was attempted to elucidate the hydrogeochemical and hydrologic characteristics of the groundwater system in the gneiss area. Shallow groundwaters are typified as the 'Ca-HCO$_3$'type with higher concentrations of Ca, Mg, SO$_4$and NO$_3$, whereas deep groundwaters are the 'Na-HCO$_3$'type with elevated concentrations of Na, Ba, Li, H$_2$S, F and Cl and are supersaturated with respect to calcite. The waters in the area are largely classified into two groups: 1) surface waters and most of shallow groundwaters, and 2) deep groundwaters and one sample of shallow groundwater. Seasonal compositional variations are recognized for the former. Multivariate statistical analysis indicates that three factors may explain about 86% of the compositional variations observed in deep groundwaters. These are: 1) plagioclase dissolution and calcite precipitation, 2) sulfate reduction, and 3) acid hydrolysis of hydroxyl-bearing minerals(mainly mica). By combining with results of thermodynamic calculation, four appropriate models of water/ rock interaction, each showing the dissolution of plagioclase, kaolinite and micas and the precipitation of calcite, illite, laumontite, chlorite and smectite, are proposed by mass balance modelling in order to explain the water quality of deep groundwaters. Oxygen-hydrogen isotope data indicate that deep groundwaters were originated from a local meteoric water recharged from distant, topograpically high mountainous region and underwent larger degrees of water/rock interaction during the regional deep circulation, whereas the shallow groundwaters were recharged from nearby, topograpically low region. Tritium data show that the recharge time was the pre-thermonuclear age for deep groundwaters (<0.2 TU) but the post-thermonuclear age for shallow groundwaters (5.66∼7.79 TU). The $\delta$$\^$34/S values of dissolved sulfate indicate that high amounts of dissolved H$_2$S (up to 3.9 mg/1), a characteristic of deep groundwaters in this area, might be derived from the reduction of sulfate. The $\delta$$\^$13/C values of dissolved carbonates are controlled by not only the dissolution of carbonate minerals by dissolved soil CO$_2$(for shallow groundwaters) but also the reprecipitation of calcite (for deep groundwaters). An integrated model of the origin, flow and chemical evolution for the groundwaters in this area is proposed in this study.

  • PDF

Mineralogy and Genesis of Bentonites from the Tertiary Formations in Geumgwangdong Area, Korea (제(第)3기층(紀層)에 부존(賦存)하는 점토광물(粘土鑛物)에 대(對)한 광물학적(鑛物學的) 및 성인적(成因的) 연구(硏究))

  • Kim, Soo Jin;Noh, Jin Hwan;Yu, Jae Young
    • Economic and Environmental Geology
    • /
    • v.18 no.4
    • /
    • pp.399-410
    • /
    • 1985
  • Bentonites from the Janggi Group of the Lower Miocene age from the Geumgwangdong area, Korea, have been studied for mineralogical and genetic characterization. The Janggi Group is subdivided, in ascending order, into the Janggi Conglomerate, the Nuldaeri Tuff, the Geumgwangdong Shale, the Lower Coal-bearing Formation, the Basaltic Tuff, and the Upper Coalbearing Formation. Bentonites occur as thin or thick beds in all sedimentary units of the Janggi Group, except for the Janggi Conglomerate. Significant bentonite deposits are found in the Nuldaeri Tuff, the Lower Coal-bearing Formation and the Basaltic Tuff. Bentonites consist mainly of smectite (mainly montmorillonite), with minor quartz, cristobalite, opal-CT and feldspar. Occasionally, kaolinite, clinoptilolite or gypsum is associated with bentonites. Bentonites were studied by the methods of petrographic microscopy, X-ray diffraction, thermal analysis (DT A and TG), infrared absorption spectroscopic analysis, SEM, intercalation reaction, and chemical analysis. Smectites commonly occur as irregular boxwork-like masses with characteristic curled thin edges, but occasionally as smoothly curved to nearly flat thin flakes. Most of smectites have layer charge of 0.25-0.42, indicating typical montmorillonite. Crystal-chemical relations suggest that Fe is the dominant substituent for Al in the octahedral layer and there are generally no significant substituents for Si in the tetrahedral layer. Ca is the dominant interlayer cation in montmorillonite. Therefore, montmorillonite from the study area is dioctahedral Ca-montmorillonite. Occurrence and fabrics of bentonites suggest that smectites as well as cristobalite, opal-CT and zeolites have been formed diagenetically from tuffaceous materials. The precursor of smectites is trachytic or basaltic tuff. Smectites derived from the former contain relatively more $Al_2O$ a and less $Fe_2O_3$ than those from the latter.

  • PDF

Geochemical Variation of Authigenic Glauconite from Continental Shelf of the Yellow Sea, off the SW Korea (한반도 남서부, 황해 대륙붕에서 자생하는 해록석의 지구화학적 변화)

  • Lee, Chan Hee;Lee, Sung-Rock;Lee, Chi-Won;Choi, Suck-Won
    • Economic and Environmental Geology
    • /
    • v.30 no.4
    • /
    • pp.303-312
    • /
    • 1997
  • The massive, fractured and porous-type of glauconite, which is subdivided by surface morphology, occur in subtidal sand and semiconsolidated intertidal sand/mud from continental shelf of the southeastern Yellow Sea. This area is presumed to be a part of Holocene transgressive tidal systems tract. The glauconite, pellet-like grains with diameter of 0.1 to 1 mm, is scattered in surface sand sediments. Results of X-ray diffraction data of the minerals are monoclinic with $a=5.242{\AA}$, $b=9.059{\AA}$, $c=10.163{\AA}$, ${\beta}=100.5^{\circ}$, $V=474.53{\AA}^3$. Thermal treatments on the oriented glauconite increase the X-ray diffraction intensity near $10{\AA}$ (001), suggesting the presence of some expandable layers. Specific gravity of the glauconite is $2.60{\pm}0.45gm/cc$ on the basis of chemical composition and unit-cell dimensions. Based on $O_{10}(OH)_2$, chemical composition of glauconites, octahedral Fe content ranges from 1.19 to 2.06 atoms, corresponding octahedral AI is 0.18 to 0.76 atoms, which progressively substitute Fe for AI with increasing from porous to massive-type. The Mg content ranges from 0.35 to 0.54 atoms, and shows higher with increasing Al contents. A systematic increase of interlayer K from 0.34 to 0.71 is also observed with apparent increases from porous to massive-type, and related to a proportion of expandable layers. The clay preserved in glauconite, which is recognized as ordered/disordered (massive to fractured-type). The interstratified illite/smectite (porous-type), contains 7 to 27 % expandable layers. The glauconite seems to originate from post depositional authigenic growth in reducing environments promoted by the dissolution of clay minerals and biogenic debris.

  • PDF

Comparative Study on Distribution of Heavy Metals of the Surface Sediments in East/West Oceanic Dumping Areas (동/서해병 해역 표층 퇴적물의 중금속 분포 특성 비교)

  • Kim, Pil-Geun;Park, Maeng-Eon;Sung, Kyu-Youl;Lim, Sung-Taek;Oh, Sul-Mi
    • Economic and Environmental Geology
    • /
    • v.42 no.2
    • /
    • pp.121-131
    • /
    • 2009
  • The distribution characteristics of heavy metals for surface sediments in east oceanic dumping area (EDA) and west oceanic dumping area (WDA) are evaluated by grain sizes, minerals, sedimentation rates and compositions of heavy metals. The mean grain sizes in EDA and WDA range from $7.95{\Phi}$ to $8.51{\Phi}$ and $7.42{\Phi}$ to $8.15{\Phi}$, respectively. These are mostly belonging to the M (mud) type. Minerals in the surface sediments consist of illite with chlorite, smectite, and kaolinite. Sedimentation rates estimated by $^{210}Pb$ method in EDA and WDA are 1.11 mm/yr$\sim$1.73 mm/yr and 1.87 mm/yr, respectively. According to the interrelationship, concentrations of Ni, Cu, Cr, and Zn are closely associated with mean grain size, Al, and Fe, whereas concentrations of Cd and Pb are poorly associated with ones. The enrichment factors of these elements are higher than 1.5, suggesting that the concentrations of Cd and Pb in the surface sediments are affected by anthropogenic sources. The $I_{geo}$-class numbers of Cd and Pb in the surface sediments are mostly classified in 2 to 4, showing moderate to strongly polluted. These numbers in EDA are higher than that of WDA, and the highest number is 4, indicative of the strongly polluted class. Our results show that the disposed wastes at EDA include mineralogical wastes, dredged materials from sewage disposals, and sludges from constructions having materials of WDA. The annual amount of oceanic dumping in EDA is double than that in WDA.