Economic burden of work-related musculoskeletal disorder(WMDs) is increasing. Known causes of WMDs include improper posture, repetition, load, and temperature of workplace. Among them, improper postures play an important role. A smart sensor called SensorTag is employed to estimate the trunk postures including flexion-extension, lateral bend, and the trunk rotational speeds. Measuring gravitational acceleration vector in the smart sensor along the tri-orthogonal axes offers an orientation of the object with the smart sensor attached to. The smart sensor is light in weight and has small form factor, making it an ideal wearable sensor for body posture measurement. Measured data from the smart senor is wirelessly transferred for analysis to a smartphone which has enough computing power, data storage and internet-connectivity, removing need for additional hardware for data post-processing. Based on the estimated body postures, WMDs risks can be conviently gauged by using existing WMDs risk assesment methods such as OWAS, RULA, REBA, etc.
Proceedings of the Korea Information Processing Society Conference
/
2014.11a
/
pp.1205-1208
/
2014
본 논문은 항상 지니고 있는 스마트폰으로 노트북 사용자가 마우스를 휴대해야 하는 불편함을 해결하기 위해 이를 대체할 수 있는 안드로이드용 스마트폰 마우스 어플리케이션을 설계하였다. 우리는 기존의 다른 연구나 실제 이미 출시된 마우스 어플리케이션들과 달리, 블루투스를 이용하여 인터넷을 사용할 수 없는 상황에서도 작동하도록 하였으며 터치패드가 아닌 가속도 센서를 통해 실제 마우스처럼 동작을 인식하도록 하였다. 또한, 스마트폰 어플리케이션의 장점인 추가적인 기능을 쉽게 추가할 수 있다는 점을 살려서 진동 모드, 자동 연사, dpi 조절 기능 등을 포함한 게이머 마우스로 설계하였다. 정확한 마우스 포인터의 이동을 표현하기 위해 운동방정식으로 센서값을 속도로 바꿔서 이를 사용하였다. 그리고 센서 오차로 인한 오류 막기 위해 센서값을 필터링하였다.
Proceedings of the Korea Information Processing Society Conference
/
2015.10a
/
pp.551-554
/
2015
본 논문에서는 스마트워치의 3축 가속도 센서와 스마트폰의 기압센서를 이용한 행동 인식 시스템을 제안한다. 스마트워치에서 획득한 3축 가속도 값을 수직, 수평 성분으로 추출하고, 스마트폰에서 획득한 기압센서의 차이를 추출하여 행동을 인식하였다. 실험 결과에서 3축 가속도 센서 기반의 행동 인식률은 66.62%를 보였으나 제안한 3축 가속도 센서와 기압센서를 이용한 행동인식률은 95.45%를 보였다.
Proceedings of the Korea Information Processing Society Conference
/
2012.11a
/
pp.385-388
/
2012
본 논문에서는 스마트 폰에 내장된 3축 가속도 센서를 이용해 제스처 훈련 및 테스터 데이터를 수집하고, DTW(Dynamic Time Warping) 알고리즘을 근간으로 하는 효과적인 제스처 인식 방법을 제안한다. 본 논문에서 제안하는 제스처 인식 방법의 성능을 분석하기 위해 안드로이드 스마트 폰에서 동작하는 제스처 인식 프로그램을 개발하였고, 이것을 이용해 수행한 성능실험 결과를 소개한다.
Journal of the Korea Society of Computer and Information
/
v.24
no.8
/
pp.95-103
/
2019
According to the Statistics Korea in 2017, the 10 leading causes of death contain a cardiac disorder disease, self-injury. In terms of these diseases, urgent assistance is highly required when people do not move for certain period of time. We propose an unusual event detection algorithm to identify abnormal user behaviors using dust, vision and activity sensors in their houses. Vision sensors can detect personalized activity behaviors within the CCTV range in the house in their lives. The pattern algorithm using the dust sensors classifies user movements or dust-generated daily behaviors in indoor areas. The accelerometer sensor in the smartphone is suitable to identify activity behaviors of the mobile users. We evaluated the proposed pattern algorithms and the fusion method in the scenarios.
International Journal of Computer Science & Network Security
/
v.21
no.2
/
pp.221-228
/
2021
Recent improvements on the quality, fidelity and availability of biometric data have led to effective human physical activity detection (HPAD) in real time which adds significant value to applications such as human behavior identification, healthcare monitoring, and user authentication. Current approaches usually use machine-learning techniques for human physical activity recognition based on the data collected from wearable accelerometer sensor from a single wearable smart device on the user. However, collecting data from a single wearable smart device may not provide the complete user activity data as it is usually attached to only single part of the user's body. In addition, in case of the absence of the single sensor, then no data can be collected. Hence, in this paper, a continuous HPAD will be presented to effectively perform user activity detection with mobile service infrastructure using multiple wearable smart devices, namely smartphone and smartwatch placed in various locations on user's body for more accurate HPAD. A case study on a comprehensive dataset of classified human physical activities with our HAPD approach shows substantial improvement in HPAD accuracy.
Proceedings of the Korea Information Processing Society Conference
/
2010.11a
/
pp.1514-1517
/
2010
최근 출시된 IPhone이나 Android Phone들을 보면 인터페이스의 편리성과 엔터테이먼트적인 요소의 극대화를 위한 가속도센서, 디지털 나침반, 근접센서, 조도센서 등, 다양한 센서들을 디바이스에 포함하고 있다. 이들 중 가속도 센서를 이용한 다양한 인터페이스가 여러 스마트폰 게임과 어플리케이션들에서 사용되고 있는데 본 논문에서는 가속도 센서의 각축의 값들을 이용해 문자나 특정 입력 값을 기기에 전달할 수 있는 제스처 인식을 위한 센서 값들의 효율적인 사전 보정 알고리즘에 대해서 제안하고자 한다.
In this paper, we propose a system that recommends music through tempo-oriented music classification and sensor-based human activity recognition. The proposed method indexes music files using tempo-oriented music classification and recommends suitable music according to the recognized user's activity. For accurate music classification, a dynamic classification based on a modulation spectrum and a sequence classification based on a Mel-spectrogram are used in combination. In addition, simple accelerometer and gyroscope sensor data of the smartphone are applied to deep spiking neural networks to improve activity recognition performance. Finally, music recommendation is performed through a mapping table considering the relationship between the recognized activity and the indexed music file. The experimental results show that the proposed system is suitable for use in any practical mobile device with a music player.
Harun Jamil;Naeem Iqbal;Murad Ali Khan;Syed Shehryar Ali Naqvi;Do-Hyeun Kim
Journal of Internet of Things and Convergence
/
v.10
no.4
/
pp.101-108
/
2024
Indoor localization is a critical component for numerous applications, ranging from navigation in large buildings to emergency response. This paper presents an enhanced Pedestrian Dead Reckoning (PDR) scheme using smartphone sensors, integrating neural network-aided motion recognition, Kalman filter-based error correction, and multi-sensor data fusion. The proposed system leverages data from the accelerometer, magnetometer, gyroscope, and barometer to accurately estimate a user's position and orientation. A neural network processes sensor data to classify motion modes and provide real-time adjustments to stride length and heading calculations. The Kalman filter further refines these estimates, reducing cumulative errors and drift. Experimental results, collected using a smartphone across various floors of University, demonstrate the scheme's ability to accurately track vertical movements and changes in heading direction. Comparative analyses show that the proposed CNN-LSTM model outperforms conventional CNN and Deep CNN models in angle prediction. Additionally, the integration of barometric pressure data enables precise floor level detection, enhancing the system's robustness in multi-story environments. Proposed comprehensive approach significantly improves the accuracy and reliability of indoor localization, making it viable for real-world applications.
Journal of Korea Society of Industrial Information Systems
/
v.17
no.3
/
pp.35-42
/
2012
The database for driving patterns can be utilized in various system such as automatic driving system, driver safety system, and it can be helpful to monitor driving style. Therefore, we propose a driving pattern recognition system in which the sensor streams from a smartphone are recorded and used for recognizing driving events. In this paper we focus on the driving pattern recognition that is an essential and preliminary step of driving style recognition. We divide input sensor streams into 7 driving patterns such as, Left-turn(L), U-turn(U), Right-turn(R), Rapid-Braking(RB), Quick-Start(QS), Rapid-Acceleration (RA), Speed-Bump(SB). To classify driving patterns, first, a preprocessing step for data smoothing is followed by an event detection step. Last the detected events are classified by DTW(Dynamic Time Warping) algorithm. For assisting drivers we provide the classified pattern with the corresponding video stream which is recorded with its sensor stream. The proposed system will play an essential role in the safety driving system or driving monitoring system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.