• Title/Summary/Keyword: SmartRing

Search Result 51, Processing Time 0.033 seconds

Active Noise Control in the Duct Using the Ring-type Smart Foam and the Optimization of a Cancellation Path (환형 스마트 폼을 이용한 덕트 내부의 능동 소음 제어 및 상쇄 경로 최적화)

  • 한제헌;강연준
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.7
    • /
    • pp.499-507
    • /
    • 2003
  • This paper presents a method for active noise control (ANC) in a duct by using a ring-tyPe smart foam. The ring-type smart foam consists of an elastic porous material of lining shape and a PVDF film embedded In the material. The PVDF element acts as a secondary sound source to reduce the noise. Active noise control using a ring-type smart foam is only effective locally because of the way to excite radially. To enlarge the quiet zone, the duct Is lined with additional acoustic foam between the smart foam and the error microphone. When cancellation path ks optimized by the LMS/RLS algorithm, the computation power is reduced while control performance Is maintained. The filtered-x LMS algorithm is used to minimize the error signal.

Sound Intensity Control in a Duct Using Smart Foam (스마트 폼을 이용한 덕트 내의 음향 인텐시티 제어)

  • 한제헌;강연준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1132-1137
    • /
    • 2001
  • The smart foam that is first proposed by Fuller(2) is not applicable to active noise control in a duct having flow. Thus. this paper presents the ring-type smart foam as an alternative. The ring-type smart foam consists of polyurethane acoustic foam of lining shape and PVDF film embedded along the mid-surface of the foam lining. A feedforward adaptive filtered-x LMS controller is used to minimize the signal from the error microphone. To enlarge quiet sound region. two error microphones are used to update system modeling filter (SIMO method). Sound intensity control using the ring-type smart foam is also discussed

  • PDF

Noise Control in a Duct Using Ring-type Smart Foam (환형 서마트 폼을 이용한 관 내부의 소음제어)

  • 한제헌;김표재;강연준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.426-430
    • /
    • 2001
  • Conventional smart foam is not applicable to active noise control in a duct having flow. Thus, this paper presents a ring-type smart foam as an alternative. The ring-type smart foam consists of polyurethane acoustic foam of lining shape and PVDF film embedded in the foam. The embedded PVDF element acts as an actuator to reduce noise at lower frequencies and the foam absorbs noise at higher frequencies. A feedforward adaptive filtered-x LMS controller is used to minimize the signal from the error microphone. Experiments are executed to reduce broadband and tonal noise.

  • PDF

Active Noise Control in a Circular Duct Using Smart Foam (원형 덕트 내에서 스마트 폼을 이용한 능동 소음 제어)

  • Han, Je-Heon;Kim, Pyo-Jae;Kang, Yeon-June
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.641-645
    • /
    • 2001
  • In this paper, it is discussed that active noise control in a circular duct using smart foam. Firstly, it is demonstrated that the potential of the conventional smart foam, proposed by Fuller, for active noise control in a duct. Conventional smart foam is not applicable to active noise control in a duct having flow. Thus, this paper presents a ring-type smart foam as an alternative. The ring-type smart foam consists of polyurethane acoustic foam of lining shape and PVDF film embedded in the foam. The embedded PVDF element acts as an actuator to reduce noise at lower frequencies and the foam absorbs noise at higher frequencies. A filtered-x LMS controller is used to minimize the signal from the error microphone. Experiments are executed to reduce broadband and tonal noise.

  • PDF

Active Noise Control in a Duct Using Smart Foam (스마트 폼을 이용한 덕트 내부의 능동 소음 제어)

  • 김표재;강연준;조영만
    • Journal of KSNVE
    • /
    • v.11 no.3
    • /
    • pp.422-427
    • /
    • 2001
  • In this paper is presented passive-active noise control in a duct using a ring-type smart foam. The ring-type smart foam is comprised of a PVDF film embedded in elastic noise control foam of lining shape. The embeddedPVDF element acts as an actuator to reduce noise at lower frequencies and the foam absorbs noise at higher frequencies. By implementing an adaptive filtered-x LMS algorithm, experiments are performed to reduce both tonal and broadband noise in a duct with one end closed and the other end open.

  • PDF

A One-Kilobit PQR-CMOS Smart Pixel Array

  • Lim, Kwon-Seob;Kim, Jung-Yeon;Kim, Sang-Kyeom;Park, Byeong-Hoon;Kwon, O'Dae
    • ETRI Journal
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • The photonic quantum ring (PQR) laser is a three dimensional whispering gallery (WG) mode laser and has anomalous quantum wire properties, such as microampere to nanoampere range threshold currents and ${\sqrt{T}}$-dependent thermal red shifts. We observed uniform bottom emissions from a 1-kb smart pixel chip of a $32{\times}32$ InGaAs PQR laser array flip-chip bonded to a 0.35 ${\mu}m$ CMOS-based PQR laser driver. The PQR-CMOS smart pixel array, now operating at 30 MHz, will be improved to the GHz frequency range through device and circuit optimization.

  • PDF

Design Issues on a Metropolitan WDM Ring Network

  • Lee, Jong-Hyung
    • International journal of advanced smart convergence
    • /
    • v.8 no.1
    • /
    • pp.35-43
    • /
    • 2019
  • A metro ring network using WDM technology requires many issues to be considered even though its transmission distance is shorter and its transmission capacity is lower than a long-haul WDM system. Unlike a long-haul WDM system, which is basically point-to-point configuration, a metro ring network usually equips with capabilty of wavelength reconfiguration. Therefore network performance considering crosstalk within OADM and the network behavior when the ring network is closed should be analyzed before implemented. We discussed some of results analyzed for the issues. Furthermore we proposed a novel method to design a dispersion map for a ring network, and demonstrated the methodology with an exemplary 8-node ring network of 399km circumference.

Development of smart transducer with embedded sensor for automatic process control of ultrasonic wire bonding

  • Or, Siu Wing;Chan, Helen Lai Wa;Liu, Peter Chou Kee
    • Smart Structures and Systems
    • /
    • v.1 no.1
    • /
    • pp.47-61
    • /
    • 2005
  • A ring-shaped lead zirconate titanate (PZT) piezoceramic sensor has been integrated with the Langevin-type piezoceramic driver of an ultrasonic wire-bonding transducer to form a smart transducer for in-situ measurement of three essential bonding parameters: namely, impact force, ultrasonic amplitude and bond time. This sensor has an inner diameter, an outer diameter and a thickness of 12.7 mm, 5.1 mm and 0.6 mm, respectively. It has a specifically designed electrode pattern on the two major surfaces perpendicular to its thickness along which polarization is induced. The process-test results have indicated that the sensor not only is sensitive to excessive impact forces exerted on the devices to be bonded but also can track changes in the ultrasonic amplitude proficiently during bonding. Good correlation between the sensor outputs and the bond quality has been established. This smart transducer has good potential to be used in automatic process-control systems for ultrasonic wire bonding.

Binding Model of Fisetin and Human c-Jun NH2-Terminal Kinase 1 and Its Anti-inflammatory Activity

  • Jnawali, Hum Nath;Lee, Eunjung;Jeong, Ki-Woong;Heo, Yong-Seok;Kim, Yangmee
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2629-2634
    • /
    • 2013
  • Fisetin is a naturally occurring flavonoid with some anti-cancer and anti-inflammation capabilities. In this study, we perform docking studies between human c-Jun N-terminal kinase 1 (JNK 1) and fisetin and proposed a binding model of fisetin and JNK 1, in which the hydroxyl groups of the B ring and oxygen at the 4-position of the C ring play key roles in binding interactions with JNK. Fluorescence quenching and saturation-transfer difference (STD) NMR experiments showed that fisetin exhibits good binding affinity to JNK, $1.32{\times}10^8M^{-1}$. The anti-inflammatory activity of fisetin was also investigated. Fisetin significantly suppressed tumor necrosis factor, the NO production, and macrophage inflammatory cytokine release in LPS-stimulated RAW264.7 mouse macrophages. We found that the anti-inflammatory cascade of fisetin was mediated through the JNK, and cyclooxygenase (COX)-2 pathways. Our findings suggest the potential of fisetin as an anti-inflammatory agent.