• Title/Summary/Keyword: Smart-sensor

Search Result 2,148, Processing Time 0.032 seconds

Stretchable Strain Sensors Using 3D Printed Polymer Structures Coated with Graphene/Carbon Nanofiber Hybrids (그래핀/탄소나노섬유 코팅된 3D 프린팅 고분자 구조를 이용한 신축성 스트레인 센서)

  • Na, Seung Chan;Lee, Hyeon-Jong;Lim, TaeGyeong;Yun, Jeongmin;Suk, Ji Won
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.283-287
    • /
    • 2022
  • Stretchable strain sensors have been developed for potential future applications including wearable devices and health monitoring. For practical implementation of stretchable strain sensors, their stability and repeatability are one of the important aspects to be considered. In this work, we utilized 3D printed polymer structures having kirigami patterns to improve the stretchability and reduce the hysteresis. The polymer structures were coated with graphene/carbon nanofiber hybrids to make a robust electrical network. The stretchable strain sensors showed a high gauge of 36 at a strain of 32%. Because of the kirigami structures and the robust graphene/carbon nanofiber coating, the sensors also exhibited stable resistance responses at various strains ranging from 1% to 30%.

Building Bearing Fault Detection Dataset For Smart Manufacturing (스마트 제조를 위한 베어링 결함 예지 정비 데이터셋 구축)

  • Kim, Yun-Su;Bae, Seo-Han;Seok, Jong-Won
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.488-493
    • /
    • 2022
  • In manufacturing sites, bearing fault in eletrically driven motors cause the entire system to shut down. Stopping the operation of this environment causes huge losses in time and money. The reason of this bearing defects can be various factors such as wear due to continuous contact of rotating elements, excessive load addition, and operating environment. In this paper, a motor driving environment is created which is similar to the domestic manufacturing sites. In addition, based on the established environment, we propose a dataset for bearing fault detection by collecting changes in vibration characteristics that vary depending on normal and defective conditions. The sensor used to collect the vibration characteristics is Microphone G.R.A.S. 40PH-10. We used various machine learning models to build a prototype bearing fault detection system trained on the proposed dataset. As the result, based on the deep neural network model, it shows high accuracy performance of 92.3% in the time domain and 98.3% in the frequency domain.

Structural health monitoring data anomaly detection by transformer enhanced densely connected neural networks

  • Jun, Li;Wupeng, Chen;Gao, Fan
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.613-626
    • /
    • 2022
  • Guaranteeing the quality and integrity of structural health monitoring (SHM) data is very important for an effective assessment of structural condition. However, sensory system may malfunction due to sensor fault or harsh operational environment, resulting in multiple types of data anomaly existing in the measured data. Efficiently and automatically identifying anomalies from the vast amounts of measured data is significant for assessing the structural conditions and early warning for structural failure in SHM. The major challenges of current automated data anomaly detection methods are the imbalance of dataset categories. In terms of the feature of actual anomalous data, this paper proposes a data anomaly detection method based on data-level and deep learning technique for SHM of civil engineering structures. The proposed method consists of a data balancing phase to prepare a comprehensive training dataset based on data-level technique, and an anomaly detection phase based on a sophisticatedly designed network. The advanced densely connected convolutional network (DenseNet) and Transformer encoder are embedded in the specific network to facilitate extraction of both detail and global features of response data, and to establish the mapping between the highest level of abstractive features and data anomaly class. Numerical studies on a steel frame model are conducted to evaluate the performance and noise immunity of using the proposed network for data anomaly detection. The applicability of the proposed method for data anomaly classification is validated with the measured data of a practical supertall structure. The proposed method presents a remarkable performance on data anomaly detection, which reaches a 95.7% overall accuracy with practical engineering structural monitoring data, which demonstrates the effectiveness of data balancing and the robust classification capability of the proposed network.

Development of Augmented Reality Character System based on Markerless Tracking (마커리스 트래킹 기반 증강현실 캐릭터 시스템 개발)

  • Hyun, Sim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1275-1282
    • /
    • 2022
  • In this study, real-time character navigation using AR lens developed by Nreal is developed. Real-time character navigation is not possible with general marker-based AR because NPC characters must guide while moving in an unspecified space. To replace this, a markerless AR system was developed using Digital Twin technology. Existing markerless AR is operated based on hardware such as GPS, gyroscope, and magnetic sensor, so location accuracy is low and processing time in the system is long, resulting in low reliability in real-time AR environment. In order to solve this problem, using the SLAM technique to construct a space into a 3D object and to construct a markerless AR based on point location, AR can be implemented without any hardware intervention in a real-time AR environment. This real-time AR environment configuration made it possible to implement a navigation system using characters in tourist attractions such as Suncheon Bay Garden and Suncheon Drama Filming Site.

Method for predicting the diagnosis of mastitis in cows using multivariate data and Recurrent Neural Network (다변량 데이터와 순환 신경망을 이용한 젖소의 유방염 진단예측 방법)

  • Park, Gicheol;Lee, Seonghun;Park, Jaehwa
    • Journal of Software Assessment and Valuation
    • /
    • v.17 no.1
    • /
    • pp.75-82
    • /
    • 2021
  • Mastitis in cows is a major factor that hinders dairy productivity of farms, and many attempts have been made to solve it. However, research on mastitis has been limited to diagnosis rather than prediction, and even this is mostly using a single sensor. In this study, a predictive model was developed using multivariate data including biometric data and environmental data. The data used for the analysis were collected from robot milking machines and sensors installed in farmhouses in Chungcheongnam-do, South Korea. The recurrent neural network model using three weeks of data predicts whether or not mastitis is diagnosed the next day. As a result, mastitis was predicted with an accuracy of 82.9%. The superiority of the model was confirmed by comparing the performance of various data collection periods and various models.

CNN based data anomaly detection using multi-channel imagery for structural health monitoring

  • Shajihan, Shaik Althaf V.;Wang, Shuo;Zhai, Guanghao;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.181-193
    • /
    • 2022
  • Data-driven structural health monitoring (SHM) of civil infrastructure can be used to continuously assess the state of a structure, allowing preemptive safety measures to be carried out. Long-term monitoring of large-scale civil infrastructure often involves data-collection using a network of numerous sensors of various types. Malfunctioning sensors in the network are common, which can disrupt the condition assessment and even lead to false-negative indications of damage. The overwhelming size of the data collected renders manual approaches to ensure data quality intractable. The task of detecting and classifying an anomaly in the raw data is non-trivial. We propose an approach to automate this task, improving upon the previously developed technique of image-based pre-processing on one-dimensional (1D) data by enriching the features of the neural network input data with multiple channels. In particular, feature engineering is employed to convert the measured time histories into a 3-channel image comprised of (i) the time history, (ii) the spectrogram, and (iii) the probability density function representation of the signal. To demonstrate this approach, a CNN model is designed and trained on a dataset consisting of acceleration records of sensors installed on a long-span bridge, with the goal of fault detection and classification. The effect of imbalance in anomaly patterns observed is studied to better account for unseen test cases. The proposed framework achieves high overall accuracy and recall even when tested on an unseen dataset that is much larger than the samples used for training, offering a viable solution for implementation on full-scale structures where limited labeled-training data is available.

Self-diagnosis Algorithm for Water Quality Sensors Based on Water Quality Monitoring Data (수질 모니터링 데이터 기반의 수질센서 자가진단 알고리즘)

  • HongJoong Kim;Jong-Min Kim;Tae-Hyung Kang;Gab-Sang Ryu
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.1
    • /
    • pp.41-47
    • /
    • 2023
  • Today, due to the increase in global population growth, the international community is discussing solving the food problem. The aquaculture industry is emerging as an alternative to solving the food problem. For the innovative growth of the aquaculture industry, smart fish farms that combine the fourth industrial technology are recently being distributed, and full-cycle digitalization is being promoted. Water quality sensors, which are important in the aquaculture industry, are electrochemical portable sensors that check water quality individually and intermittently, making it impossible to analyze and manage water quality in real time. Recently, optically-based monitoring sensors have been developed and applied, but the reliability of monitoring data cannot be guaranteed because the state information of the water quality sensor is unknown. Therefore, this paper proposes an algorithm representing self-diagnosis status such as Failure, Out of Specification, Maintenance Required, and Check Function based on monitoring data collected by water quality sensors to ensure data reliability.

Computer vision and deep learning-based post-earthquake intelligent assessment of engineering structures: Technological status and challenges

  • T. Jin;X.W. Ye;W.M. Que;S.Y. Ma
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.311-323
    • /
    • 2023
  • Ever since ancient times, earthquakes have been a major threat to the civil infrastructures and the safety of human beings. The majority of casualties in earthquake disasters are caused by the damaged civil infrastructures but not by the earthquake itself. Therefore, the efficient and accurate post-earthquake assessment of the conditions of structural damage has been an urgent need for human society. Traditional ways for post-earthquake structural assessment rely heavily on field investigation by experienced experts, yet, it is inevitably subjective and inefficient. Structural response data are also applied to assess the damage; however, it requires mounted sensor networks in advance and it is not intuitional. As many types of damaged states of structures are visible, computer vision-based post-earthquake structural assessment has attracted great attention among the engineers and scholars. With the development of image acquisition sensors, computing resources and deep learning algorithms, deep learning-based post-earthquake structural assessment has gradually shown potential in dealing with image acquisition and processing tasks. This paper comprehensively reviews the state-of-the-art studies of deep learning-based post-earthquake structural assessment in recent years. The conventional way of image processing and machine learning-based structural assessment are presented briefly. The workflow of the methodology for computer vision and deep learning-based post-earthquake structural assessment was introduced. Then, applications of assessment for multiple civil infrastructures are presented in detail. Finally, the challenges of current studies are summarized for reference in future works to improve the efficiency, robustness and accuracy in this field.

Analysis of Vibration Velocity Behavior of Rock Slope in Rock Blasting by Three-Dimensional Numerical Analysis (3차원 수치해석을 통한 암반 발파 시 암반 사면의 진동속도 거동 분석)

  • Chang-Young Park;Jae-Young Heo;Yong-Jin Kim;Seung-Joo Lee;Young-Seok Kim;Ji-Hoon Kim;Yong-Seong Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.3
    • /
    • pp.71-86
    • /
    • 2023
  • Rock blasting tests using underground penetration-type displacement sensors were conducted, and three-dimensional finite element numerical analyses were performed to assess their applicability and mitigate slope hazards during rock blasting. Additionally, parameters influencing vibration velocity were investigated during the tests. The results confirmed that underground penetration-type displacement sensors are suitable for monitoring rock slope behavior, and the numerical analyses revealed that the most influential parameter on vibration velocity during rock blasting is the unit weight. Furthermore, it was observed that vibration velocity decreases significantly with distance from the blast source, and proximity to the source leads to substantial variations in vibration velocity due to differences in elastic modulus and unit weight. Changes in internal friction angle and adhesive strength had minimal impact.

Smart Radar System for Life Pattern Recognition (생활패턴 인지가 가능한 스마트 레이더 시스템)

  • Sang-Joong Jung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.2
    • /
    • pp.91-96
    • /
    • 2022
  • At the current camera-based technology level, sensor-based basic life pattern recognition technology has to suffer inconvenience to obtain accurate data, and commercial band products are difficult to collect accurate data, and cannot take into account the motive, cause, and psychological effect of behavior. the current situation. In this paper, radar technology for life pattern recognition is a technology that measures the distance, speed, and angle with an object by transmitting a waveform designed to detect nearby people or objects in daily life and processing the reflected received signal. It was designed to supplement issues such as privacy protection in the existing image-based service by applying it. For the implementation of the proposed system, based on TI IWR1642 chip, RF chipset control for 60GHz band millimeter wave FMCW transmission/reception, module development for distance/speed/angle detection, and technology including signal processing software were implemented. It is expected that analysis of individual life patterns will be possible by calculating self-management and behavior sequences by extracting personalized life patterns through quantitative analysis of life patterns as meta-analysis of living information in security and safe guards application.