• Title/Summary/Keyword: Smart-city

Search Result 985, Processing Time 0.025 seconds

Analysis of Traffic Safety Effectiveness of Vehicle Seat-belt Wearing Detection System (주행차량 안전벨트 착용 검지시스템 교통안전 효과 분석)

  • Ji won Park;Su bin Park;Sang cheol Kang;Cheol Oh
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.53-73
    • /
    • 2023
  • Although it is mandatory to wear a seat belt that can minimize human injury when traffic accident occurs, the number of traffic accident casualties not wearing seat belts still accounts for a significant proportion.The seat belt wearing detection system for all seats is a system that identifies whether all seat passengers wear a seat belt and encourages their usage, also it can be a useful technical countermeasure. Firstly, this study established the viability of system implementation by assessing the factors influencing the severity of injuries in traffic accidents through the development of an ordered probit model. Analysis results showed that the use of seat belts has statistically significant effects on the severity of traffic accidents, reducing the probability of death or serious injury by 0.054 times in the event of a traffic accident. Secondly, a meta-analysis was conducted based on prior research related to seat belts and injuries in traffic accidents to estimate the expected reduction in accident severity upon the implementation of the system.The analysis of the effect of accident severity reduction revealed that wearing seat belts would lead to a 63.3% decrease in fatal accidents, with the front seats showing a reduction of 75.7% and the rear seats showing a reduction of 58.1% in fatal accidents. Lastly, Using the results of the meta-analysis and traffic accident statistics, the expected decrease in the number of traffic accident casualties with the implementation of the system was derived to analyze the traffic safety effects of the proposed detection system. The analysis demonstrated that with an increase in the adoption rate of the system, the number of casualties in accidents where seat belts were not worn decreased. Specifically, at a system adoption rate of 60%, it is anticipated that the number of fatalities would decrease by more than three times compared to the current scenario. Based on the analysis results, operational strategies for the system were proposed to increase seat belt usage rates and reduce accident severity.

Waterbody Detection for the Reservoirs in South Korea Using Swin Transformer and Sentinel-1 Images (Swin Transformer와 Sentinel-1 영상을 이용한 우리나라 저수지의 수체 탐지)

  • Soyeon Choi;Youjeong Youn;Jonggu Kang;Seoyeon Kim;Yemin Jeong;Yungyo Im;Youngmin Seo;Wanyub Kim;Minha Choi;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.949-965
    • /
    • 2023
  • In this study, we propose a method to monitor the surface area of agricultural reservoirs in South Korea using Sentinel-1 synthetic aperture radar images and the deep learning model, Swin Transformer. Utilizing the Google Earth Engine platform, datasets from 2017 to 2021 were constructed for seven agricultural reservoirs, categorized into 700 K-ton, 900 K-ton, and 1.5 M-ton capacities. For four of the reservoirs, a total of 1,283 images were used for model training through shuffling and 5-fold cross-validation techniques. Upon evaluation, the Swin Transformer Large model, configured with a window size of 12, demonstrated superior semantic segmentation performance, showing an average accuracy of 99.54% and a mean intersection over union (mIoU) of 95.15% for all folds. When the best-performing model was applied to the datasets of the remaining three reservoirsfor validation, it achieved an accuracy of over 99% and mIoU of over 94% for all reservoirs. These results indicate that the Swin Transformer model can effectively monitor the surface area of agricultural reservoirs in South Korea.

Development and assessment of pre-release discharge technology for response to flood on deteriorated reservoirs dealing with abnormal weather events (이상기후대비 노후저수지 홍수 대응을 위한 사전방류 기술개발 및 평가)

  • Moon, Soojin;Jeong, Changsam;Choi, Byounghan;Kim, Seungwook;Jang, Daewon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.775-784
    • /
    • 2023
  • With the increasing trend of extreme rainfall that exceeds the design frequency of man-made structures due to extreme weather, it is necessary to review the safety of agricultural reservoirs designed in the past. However, there are no local government-managed reservoirs (13,685) that can be discharged in an emergency, except for reservoirs over a certain size under the jurisdiction of the Korea Rural Affairs Corporation. In this case, it is important to quickly deploy a mobile siphon to the site for preliminary discharge, and this study evaluated the applicability of a mobile siphon with a diameter of 200 mm, a minimum water level difference of 6 m, 420 (m2/h), and 10,000 (m2/day), which can perform both preliminary and emergency discharge functions, to the Yugum Reservoir in Gyeongju City. The test bed, Yugum Reservoir, is a facility that was completed in 1945 and has been in use for about 78 years. According to the hydrological stability analysis, the lowest height of the current dam crest section is 27.15 (EL.m), which is 0.29m lower than the reviewed flood level of 27.44 (EL.m), indicating that there is a possibility of lunar flow through the embankment, and the headroom is insufficient by 1.72 m, so it was reviewed as not securing hydrological safety. The water level-volume curve was arbitrarily derived because it was difficult to clearly establish the water level-flow relationship curve of the reservoir since the water level-flow measurement was not carried out regularly, and based on the derived curve, the algorithm for operating small and medium-sized old reservoirs was developed to consider the pre-discharge time, the amount of spillway discharge, and to predict the reservoir lunar flow time according to the flood volume by frequency, thereby securing evacuation time in advance and reducing the risk of collapse. Based on one row of 200 mm diameter mobile siphons, the optimal pre-discharge time to secure evacuation time (about 1 hour) while maintaining 80% of the upper limit water level (about 30,000 m2) during a 30-year flood was analyzed to be 12 hours earlier. If the pre-discharge technology utilizing siphons for small and medium-sized old reservoirs and the algorithm for reservoir operation are implemented in advance in case of abnormal weather and the decision-making of managers is supported, it is possible to secure the safety of residents in the risk area of reservoir collapse, resolve the anxiety of residents through the establishment of a support system for evacuating residents, and reduce risk factors by providing risk avoidance measures in the event of a reservoir risk situation.

Analysis of domestic water usage patterns in Chungcheong using historical data of domestic water usage and climate variables (생활용수 실적자료와 기후 변수를 활용한 충청권역 생활용수 이용량 패턴 분석)

  • Kim, Min Ji;Park, Sung Min;Lee, Kyungju;So, Byung-Jin;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Persistent droughts due to climate change will intensify water shortage problems in Korea. According to the 1st National Water Management Plan, the shortage of domestic and industrial waters is projected to be 0.07 billion m3/year under a 50-year drought event. A long-term prediction of water demand is essential for effectively responding to water shortage problems. Unlike industrial water, which has a relatively constant monthly usage, domestic water is analyzed on monthly basis due to apparent monthly usage patterns. We analyzed monthly water usage patterns using water usage data from 2017 to 2021 in Chungcheong, South Korea. The monthly water usage rate was calculated by dividing monthly water usage by annual water usage. We also calculated the water distribution rate considering correlations between water usage rate and climate variables. The division method that divided the monthly water usage rate by monthly average temperature resulted in the smallest absolute error. Using the division method with average temperature, we calculated the water distribution rates for the Chungcheong region. Then we predicted future water usage rates in the Chungcheong region by multiplying the average temperature of the SSP5-8.5 scenario and the water distribution rate. As a result, the average of the maximum water usage rate increased from 1.16 to 1.29 and the average of the minimum water usage rate decreased from 0.86 to 0.84, and the first quartile decreased from 0.95 to 0.93 and the third quartile increased from 1.04 to 1.06. Therefore, it is expected that the variability in monthly water usage rates will increase in the future.

The effect of climate change on hydroelectric power generation of multipurpose dams according to SSP scenarios (SSP 시나리오에 따른 기후변화가 다목적댐 수력발전량에 미치는 영향 분석)

  • Wang, Sizhe;Kim, Jiyoung;Kim, Yongchan;Kim, Dongkyun;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.7
    • /
    • pp.481-491
    • /
    • 2024
  • Recent droughts make hydroelectric power generation (HPG) decreasing. Due to climate change in the future, the frequency and intensity of drought are expected to increase, which will increase uncertainty of HPG in multi-purpose dams. Therefore, it is necessary to estimate the amount of HPG according to climate change scenarios and analyze the effect of drought on the amount of HPG. This study analyzed the future HPG of the Soyanggang Dam and Chungju Dam according to the SSP2-4.5 and SSP5-8.5 scenarios. Regression equations for HPG were developed based on the observed data of power generation discharge and HPG in the past provided by My Water, and future HPGs were estimated according to the SSP scenarios. The effect of drought on the amount of HPG was investigated based on the drought severity calculated using the standardized precipitation index (SPI). In this study, the future SPIs were calculated using precipitation data based on four GCM models (CanESM5, ACCESS-ESM1-5, INM-CM4-8, IPSL-CM6A) provided through the environmental big data platform. Overall results show that climate change had significant effects on the amount of HPG. In the case of Soyanggang Dam, the amount of HPG decreased in the SSP2-4.5 and SSP5-8.5 scenarios. Under the SSP2-4.5 scenario the CanESM model showed a 65% reduction in 2031, and under the SSP5-8.5 scenario the ACCESS-ESM1-5 model showed a 54% reduction in 2029. In the case of Chungju Dam, under the SSP2-4.5 and SSP5-8.5 scenarios the average monthly HPG compared to the reference period showed a decreasing trend except for INM-CM4 model.