• Title/Summary/Keyword: Smart-agriculture

Search Result 479, Processing Time 0.027 seconds

Inactivation influences on Escherichia coli DS5α by irradiation with 405 nm violet-light

  • Young-Sun Kim;Mun-Jin Choi;Dae-Young Lee;Sang-Ook Kang;Geung-Joo Lee
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.3
    • /
    • pp.459-467
    • /
    • 2023
  • Because an irradiation of 405 nm violet light could have a strong energy, it was used to be sterilized against various microbes in the indoor air condition or fresh food. Escherichia coli is a representative bio-pollutant in the indoor air-borne bacteria, and a hygienic microbe in the horticultural food. This study evaluated the inactivation influences on E. coli DS5α after exposure to 405 nm violet-light (VL) by investigating irradiating time, and the vertical and horizonal distance from light source. The illumination of 405 nm VL was inversely proportional to the distance from the VL source. E. coli DS5α on nutrient agar (NA) was inactivated approximately 50% more than the control when irradiated at 65 cm from 405 nm VL for 3 hours. When compared to the control, E. coli DS5α was inactivated approximately 50% within 70 cm from 405 nm VL for 3 hours. As it was irradiated for 3 hours 70 cm away from 405 nm VL, the horizonal distance from the point was negatively correlated to the inactivation of E. coli DS5α. These results indicated that the inactivation of E. coli DS5α grown on NA medium needs to be irradiated with 405 nm within 70 cm from the light source for 3 hours.

Comparison of Leaf Color and Storability of Mixed Baby Leaf Vegetables according to the Mixing Ratios of Red Romaine lettuces (Lactuca sativa), Peucedanum japoincum, and Ligularia stenocephala during MA Storage (MA저장중 혼합비율에 따른 적로메인, 갯기름나물, 그리고 곤달비 혼합 어린잎채소의 엽색과 저장성 비교)

  • Choi, In-Lee;Lee, Joo Hwan;Wang, Li-Xia;Park, Wan Geun;Kang, Ho-Min
    • Journal of Bio-Environment Control
    • /
    • v.30 no.1
    • /
    • pp.77-84
    • /
    • 2021
  • This study attempted to find a way to maintain the quality of mixing baby wild leaf vegetables with existing baby leaf vegetables in various ratios. The crops for mixing baby leaf vegetables were Peucedanum japoincum Thunberg and Ligularia stenocephala, as wild vegetables, and red romaine, which is widely used in young leafy vegetables. The mixing ratio of red romaine and wild vegetables was red romaine 0: mantilla oil 5: L. stenocephala ratio 5 (R0: P5: L5), red romaine 3.3: P. japoincum 3.3: L. stenocephala ratio 3.3 (R3.3: P3.3: L3.3), red romaine 5: P. japoincum 2.5: L. stenocephala 2.5 (R5: P2.5: L2.5), red romaine 8: P. japoincum 1: L. stenocephala 1 (R8: P1: L1), red romaine 10: P. japoincum 0: L. stenocephala 0 (R10: P0: L0). All treatments were packaged in OTR (oxygen transmittance) 10,000 cc m-2·day-1·atm-1 film and stored for 27 days at 2℃/85% RH conditions. Fresh weight, carbon dioxide, oxygen, and ethylene concentrations of the baby leaf packages were examined approximately every 3 days, and visual quality, chlorophyll content, and chromaticity were examined on the 27th day of storage. The oxygen and carbon dioxide concentration in the packages were affected by the respiration rate of the crop. As the mixing ratio of lettuce, which had a low respiration rate, increased, the oxygen concentration in the packages was higher and the carbon dioxide concentration was lower. Oxygen concentration decreased significantly after 15 days, but was remained above 16%, and on the contrary, carbon dioxide concentration was kept at 1-4% until the 15th, and then gradually increased to 2-5% on the 27th day. The concentration of ethylene was maintained at 3-6 µL·L-1 until the end of storage (27th day). Visual quality score measured at the end of storage was slightly less than 3.0, which is the limit of marketability of all treatments. Although there was no significant difference, the chlorophyll content (SPAD) of red romaine and P. japoincum were most similar with an initial value in R8:P1:1 treatment, and L. stenocephala was higher value in R8:P1:L1 and R5:P2.5:L2.5 treatments at the end of storage. The leaf color (L∗, a∗, b∗, chroma) of the three crops at end of storage compared with the heat map showed the least change in the R5:P2.5:L2.5 and R8:P1:L1 treatments at the end of storage. Among them, R8:P1:L1 treatment maintained the highest chlorophyll content, the second lowest ethylene concentration, and adequate carbon dioxide concentration of 2-3%. Therefore, it is judged that the mixed ratio of red romaine 8: P. japoincum 1: L. stenocephala 1 (R8: P1: L1) is most suitable for the mixed package of baby leaf vegetables of these three crops.

Implementation of a Weather Hazard Warning System at a Catchment Scale (집수역 규모 기상위험 경보체계 구축)

  • Park, Ju Hyun;Kim, Seong Kee;Shin, Yong Soon;Ahn, Mun Il;Han, Yong Kyu
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.389-395
    • /
    • 2014
  • This technical note describes about the base stages of technology implementation for establishing "Early Warning System for Weather Hazard Management in Climate-smart Agriculture" to national onsite service. First of all, a special weather report service at catchment was represented sequential risk of 810 units of catchment by spatial statistical methods to existing 150 counties units special weather report released in KMA. The second, chronic hazard alarm service based on daily data of 76 Synoptic stations was monitor about 810 Catchment of mid-long term lapse weather and represented as a relative risk index chronic hazard risk of this time in preparation for the climatological normal conditions in the same period. Finally, we establish the foundation for delivering individually calculated field specific in hazard risk about volunteer farmer of early warning service demonstration area in seomjin downstream watershed. These three types of information were built a near real-time map service on the VWORLD background map of Ministry of Land as superposed layers nationwide catchment and demonstration areas within the farm unit weather hazard.

Current status and prospects of plant diagnosis and phenomics research by using ICT remote sensing system (ICT 원격제어 system 이용 식물진단, Phenomics 연구현황 및 전망)

  • Jung, Yu Jin;Nou, Ill Sup;Kim, Yong Kwon;Kim, Hoy Taek;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.43 no.1
    • /
    • pp.21-29
    • /
    • 2016
  • Remote Sensing (RS) is a technique to obtain necessary information in a non-contact and non-destructive method by using various sensors on the surface, water or atmospheric phenomena. These techniques combine elements such as sensors, and platform and information communication technology (ICT) for mounting the sensor. ICT has contributed significantly to the success of smart agriculture through quantification and measurement of environmental factors and information such as weather, crop and soil management to distribution and consumption stage, as well as the production stage by the cloud computer. Remote sensing techniques, including non-destructive non-contact bioimaging (remote imaging) is required to measure the plant function. In addition, bioimaging study in plant science is performed at the gene, cellular and individual plant level. Recently, bioimaging technology is considered the latest phenomics that identifies the relationship between the genotype and environment for distinguishing phenotypes. In this review, trends in remote sensing in plants, plants diagnostics and response to environment and status of plants phonemics research were presented.

User-specific Agrometeorological Service to Local Farming Community: A Case Study (농가맞춤형 기상서비스 시범사업)

  • Yun, Jin I.;Kim, Soo-Ock;Kim, Jin-Hee;Kim, Dae-Jun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.4
    • /
    • pp.320-331
    • /
    • 2013
  • The National Center for AgroMeteorology (NCAM) has designed a risk management solution for individual farms threatened by the climate change and variability. The new service produces weather risk indices tailored to the crop species and phenology by using site-specific weather forecasts and analysis derived from digital products of the Korea Meteorological Administration (KMA). If the risk is high enough to cause any damage to the crops, agrometeorological warnings or watches are delivered to the growers' cellular phones with relevant countermeasures to help protect their crops against the potential damage. Core techniques such as scaling down of weather data to individual farm level and the crop specific risk assessment for operational service were developed and integrated into a cloud based service system. The system was employed and implemented in a rural catchment of 50 $km^2$ with diverse agricultural activities and 230 volunteer farmers are participating in this project to get the user-specific weather information from and to feed their evaluations back to NCAM. The experience obtained through this project will be useful in planning and developing the nation-wide early warning service in agricultural sector exposed to the climate and weather extremes under climate change and climate variability.

MAKING AGRICULTURAL INSURANCE IN INDIA FARMER-FRIENDLY AND CLIMATE RESILIENT

  • Kumar, K. Nirmal Ravi
    • Agribusiness and Information Management
    • /
    • v.11 no.1
    • /
    • pp.27-39
    • /
    • 2019
  • Agricultural risks are exacerbated by a variety of factors ranging from climatevariability and change, frequent natural disasters, uncertainties in yields and prices, weakrural infrastructure, imperfect markets and lack of financial services including limited spanand design of risk mitigation instruments such as credit and insurance. Indian agriculture has little more than half (53%) of its area still rainfed and this makes it highly sensitive to vagaries of climate causing unstable output. Besides adverse climatic factors, there are man-made disasters such as fire, sale of spurious seeds, adulteration of pesticides and fertilizers etc., and all these severely affect farmers through loss in production and farm income, and are beyond the control of farmers. Hence, crop insurance' is considered to be the promising tool to insulate the farmers from risks faced by them and to sustain them in the agri-business. This paper critically evaluates the performance of recent crop insurance scheme viz., Pradhan Mantri Fasal Bhima Yojana (PMFBY) and its comparative performance with earlier agricultural insurance schemes implemented in the country. It is heartening that, the comparative performance of PMFBY with earlier schemes revealed that, the Government has definitely taken a leap forward in covering more number of farmers and bringing more area under crop insurance with the execution of this new scheme and on this front, it deserves the appreciation in fulfilling the objective for bringing more number of farmers under insurance cover. The use of mobile based technology, reduced number of Crop Cutting Experiments (CCEs) and smart CCEs, digitization of land record and linking them to farmers' account for faster assessment/settlement of claims are some of the steps that contributed for effective implementation of this new crop insurance scheme. However, inadequate claim payments, errors in loss/yield assessment, delayed claim payment, no direct linkage between insurance companies and farmers are the major shortcomings of this scheme. This calls for revamping the crop insurance program in India from time to time in tune with the dynamic changes in climatic factors on one hand and to provide a safety-net for farmers to mitigate losses arising from climatic shocks on the other. The future research avenues include: insuring the revenue of the farmer (Price × Yield) as in USA and more and more tenant farmers should be brought under insurance by doling out discounts for group coverage of farmers like in Philippines where 20 per cent discount in premium is given for a group of 5-10 farmers, 30 per cent for a group of 10-20 and 40 per cent for a group of >20 farmers.

Outside Temperature Prediction Based on Artificial Neural Network for Estimating the Heating Load in Greenhouse (인공신경망 기반 온실 외부 온도 예측을 통한 난방부하 추정)

  • Kim, Sang Yeob;Park, Kyoung Sub;Ryu, Keun Ho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.4
    • /
    • pp.129-134
    • /
    • 2018
  • Recently, the artificial neural network (ANN) model is a promising technique in the prediction, numerical control, robot control and pattern recognition. We predicted the outside temperature of greenhouse using ANN and utilized the model in greenhouse control. The performance of ANN model was evaluated and compared with multiple regression model(MRM) and support vector machine (SVM) model. The 10-fold cross validation was used as the evaluation method. In order to improve the prediction performance, the data reduction was performed by correlation analysis and new factor were extracted from measured data to improve the reliability of training data. The backpropagation algorithm was used for constructing ANN, multiple regression model was constructed by M5 method. And SVM model was constructed by epsilon-SVM method. As the result showed that the RMSE (Root Mean Squared Error) value of ANN, MRM and SVM were 0.9256, 1.8503 and 7.5521 respectively. In addition, by applying the prediction model to greenhouse heating load calculation, it can increase the income by reducing the energy cost in the greenhouse. The heating load of the experimented greenhouse was 3326.4kcal/h and the fuel consumption was estimated to be 453.8L as the total heating time is $10000^{\circ}C/h$. Therefore, data mining technology of ANN can be applied to various agricultural fields such as precise greenhouse control, cultivation techniques, and harvest prediction, thereby contributing to the development of smart agriculture.

A Time Slot Assignment Scheme for Sensor Data Compression (센서 데이터의 압축을 위한 시간 슬롯 할당 기법)

  • Yeo, Myung-Ho;Kim, Hak-Sin;Park, Hyoung-Soon;Yoo, Jae-Soo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.11
    • /
    • pp.846-850
    • /
    • 2009
  • Recently, wireless sensor networks have found their way into a wide variety of applications and systems with vastly varying requirements and characteristics such as environmental monitoring, smart spaces, medical applications, and precision agriculture. The sensor nodes are battery powered. Therefore, the energy is the most precious resource of a wireless sensor network since periodically replacing the battery of the nodes in large scale deployments is infeasible. Energy efficient mechanisms for gathering sensor readings are indispensable to prolong the lifetime of a sensor network as long as possible. There are two energy-efficient approaches to prolong the network lifetime in sensor networks. One is the compression scheme to reduce the size of sensor readings. When the communication conflict is occurred between two sensor nodes, the sender must try to retransmit its reading. The other is the MAC protocol to prevent the communication conflict. In this paper, we propose a novel approaches to reduce the size of the sensor readings in the MAC layer. The proposed scheme compresses sensor readings by allocating the time slots of the TDMA schedule to them dynamically. We also present a mathematical model to predict latency from collecting the sensor readings as the compression ratio is changed. In the simulation result, our proposed scheme reduces the communication cost by about 52% over the existing scheme.

Growth Properties of Mixtures with Mixed Organic Fertilizer and Dried Food Waste Powder in Pakchoi (Brassica rapa L.) (음식물류폐기물건조분말과 혼합유기질비료 혼합물의 청경채 생장 효과)

  • Kim, Young-Sun;Cho, Sung-Hyun;Lee, Hoonsoo;Lee, Geung-Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.3
    • /
    • pp.17-25
    • /
    • 2021
  • This study was conducted to investigate effects of mixture with dried food waste powder (FWP) and mixed organic fertilizer (MOF) on growth of pakchoi. As compared with non-fertilizer treatment (NF) or control (MOF treatment), growth of pakchoi in FWP treatments (2,500 kg/ha, 5,000 kg/ha, 10,000 kg/ha) was inhibited by salt (NaCl) content in the FWP. In comparison with control, mixtures of MOF and FWP (FWP10, FWP20, and FWP30 treatment) were not significantly different, and their salt content correlated with pakchoi growth factors negatively (P<0.05). Applied of FWP10, (FWP10: 2,500 kg/ha, 2FWP10: 5,000 kg/ha, 3FWP10: 7,500 kg/ha, 4FWP10: 10,000 kg/ha), growth factors of FWP10, 2FWP10 and 3FWP10 treatment were not significantly different than those of chemical fertilizer treatment, and of 4FWP10 decreased. Correlation coefficient between NaCl supply by FWP10 application and growth factor was negative (P<0.01). These results indicated that FWP was used as another source of organic fertilizer, and the organic fertilizers blending with FWP inhibited a pakchoi growth by increase of salt content containing in the them or of salt supplying amount after their application.

Preliminary growth chamber experiments using thermal infrared image to detect crop disease (적외선 촬영 영상 기반의 작물 병해 모니터링 가능성 타진을 위한 실내 감염 실험)

  • Jeong, Hoejeong;Jeong, Rae-Dong;Ryu, Jae-Hyun;Oh, Dohyeok;Choi, Seonwoong;Cho, Jaeil
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.2
    • /
    • pp.111-116
    • /
    • 2019
  • The biotic stress of garlic and tobacco infected by bacteria and virus was evaluated using a thermal imaging camera in a growth chamber. The remote sensing technique using the thermal camera detected that garlic leaf temperature increased when the leaves were infected by bacterial soft rot of garlic. Furthermore, the temperature of leaf was relatively high for the leaves where the colony-forming unit per mL was large. Such temperature patterns were detected for tobacco leaves infected by Cucumber Mosaic Virus using thermal images. In addition, the crop water stress index (CWSI) calculated from leaf temperature also increased for the leaves infected by the virus. The event such that CWSI increased by the infection of the virus occurred before visual disease symptom appeared. Our results suggest that the thermal imaging camera would be useful for the development of crop remote sensing technique, which can be applied to a smart farm.