• Title/Summary/Keyword: Smart-Work

Search Result 1,332, Processing Time 0.025 seconds

Layout optimization of wireless sensor networks for structural health monitoring

  • Jalsan, Khash-Erdene;Soman, Rohan N.;Flouri, Kallirroi;Kyriakides, Marios A.;Feltrin, Glauco;Onoufriou, Toula
    • Smart Structures and Systems
    • /
    • v.14 no.1
    • /
    • pp.39-54
    • /
    • 2014
  • Node layout optimization of structural wireless systems is investigated as a means to prolong the network lifetime without, if possible, compromising information quality of the measurement data. The trade-off between these antagonistic objectives is studied within a multi-objective layout optimization framework. A Genetic Algorithm is adopted to obtain a set of Pareto-optimal solutions from which the end user can select the final layout. The information quality of the measurement data collected from a heterogeneous WSN is quantified from the placement quality indicators of strain and acceleration sensors. The network lifetime or equivalently the network energy consumption is estimated through WSN simulation that provides realistic results by capturing the dynamics of the wireless communication protocols. A layout optimization study of a monitoring system on the Great Belt Bridge is conducted to evaluate the proposed approach. The placement quality of strain gauges and accelerometers is obtained as a ratio of the Modal Clarity Index and Mode Shape Expansion values that are computed from a Finite Element model of the monitored bridge. To estimate the energy consumption of the WSN platform in a realistic scenario, we use a discrete-event simulator with stochastic communication models. Finally, we compare the optimization results with those obtained in a previous work where the network energy consumption is obtained via deterministic communication models.

Selective Harmonic Elimination in Multi-level Inverters with Series-Connected Transformers with Equal Power Ratings

  • Moussa, Mona Fouad;Dessouky, Yasser Gaber
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.464-472
    • /
    • 2016
  • This study applies the selective harmonic elimination (SHE) technique to design and operate a regulated AC/DC/AC power supply suitable for maritime military applications and underground trains. The input is a single 50/60 Hz AC voltage, and the output is a 400 Hz regulated voltage. The switching angles for a multi-level inverter and transformer turns ratio are determined to operate with special connected transformers with equal power ratings and produce an almost sinusoidal current. As a result of its capability of directly controlling harmonics, the SHE technique is applicable to apparatus with congenital immunity to specific harmonics, such as series-connected transformers, which are specially designed to equally share the total load power. In the present work, a single-phase 50/60 Hz input source is rectified via a semi-controlled bridge rectifier to control DC voltage levels and thereby regulate the output load voltage at a constant level. The DC-rectified voltage then supplies six single-phase quazi-square H-bridge inverters, each of which supplies the primary of a single-phase transformer. The secondaries of the six transformers are connected in series. Through off-line calculation, the switching angles of the six inverters and the turns ratios of the six transformers are designed to ensure equal power distribution for the transformers. The SHE technique is also employed to eliminate the higher-order harmonics of the output voltage. A digital implementation is carried out to determine the switching angles. Theoretical results are demonstrated, and a scaled-down experimental 600 VA prototype is built to verify the validity of the proposed system.

A Guidelines for Establishing Mobile App Management System in Military Environment - focus on military App store and verification system - (국방환경에서 모바일 앱 관리체계 구축방안 제시 - 국방 앱스토어 및 검증시스템 중심으로 -)

  • Lee, Gab-Jin;Goh, Sung-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.3
    • /
    • pp.525-532
    • /
    • 2013
  • Recently. smartphones have been popularized rapidly and now located deep in our daily life, providing a variety of services from banking, SNS (Social Network Service), and entertainment to smart-work mobile office through apps. Such smartphone apps can be easily downloaded from what is known as app store which, however, bears many security issues as software developers can just as easily upload to it. Military apps will be exposed to a myriad of security threats if distributed through internet-basis commercial app store. In order to mitigate such security concerns, this paper suggests a security guidelines for establishing a military-excusive app store and security verification system which prevent the security hazards that can occur during the process of development and distribution of military-use mobile apps.

Processing Methods for Ink-and-Wash Painting in Mobile Contents (모바일 콘텐츠의 수묵 담채 렌더링을 위한 프로세싱 기법)

  • Jang, Hyun-Ho;Jeon, Jae-Woong;Choy, Yoon-Chul
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.3
    • /
    • pp.137-146
    • /
    • 2011
  • Development of mobile devices such as smart phones and tablet PC and increased usage for mobile contents make researches of mobile computer graphics noticeable. However, previous non-photorealistic renderings such as an ink-and-wash painting with thin colors are almost designed for desktop platform and not well-matched for mobile devices. In the result, mobile-specific rendering techniques are needed to create 3D mobile contents with non-photorealistic graphics. We introduce processing techniques that are especially ink-and-wash painting and oriental thin coloring in mobile devices. Through the result of this paper, it is expected that various 3D mobile contents with non-photorealistic styles are made. Proposed work also can allow mobile devices render it in realtime using proposed preprocessing techniques and rendering pipelines.

A Study on the Development of a Novel Pressure Sensor based on Nano Carbon Piezoresistive Composite by Using 3D Printing (3D 프린팅을 활용한 탄소 나노 튜브 전왜성 복합소재 기반 압력 센서 개발 연구)

  • Kim, Sung Yong;Kang, Inpil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.3
    • /
    • pp.187-192
    • /
    • 2017
  • This paper presents an ongoing study to develop a novel pressure sensor by means of a Nano Carbon Piezoresistive Composite (NCPC). The sensor was fabricated using the 3D printing process. We designed a miniaturized cantilever-type sensor electrode to improve the pressure sensing performance and utilized a 3D printer to build a small-sized body. The sensor electrode was made of 2 wt% MWCNT/epoxy piezoresistive nano-composite, and the sensor body was encapsulated with a pipe plug cap for easy installation to any pressure system. The piezoresistivity responses of the sensor were converted into stable voltage outputs by using a signal processing system, which is similar to a conventional foil strain gauge. We evaluated the pressure-sensing performances using a pressure calibrator in the lab environment. The 3D-printed cantilever electrode pressure sensor showed linear voltage outputs of up to 16,500 KPa, which is a 200% improvement in the pressure sensing range when compared with the bulk-type electrode used in our previous work.

A Study on the Effects of Electroencephalogram of Blocking Electromagnetic Wave Materials by useing the Nano Silver (나노 은을 이용한 전자파 차폐 직물이 뇌파에 미치는 영향)

  • Lee, Su-Jeong;Lee, Tae-Il
    • Fashion & Textile Research Journal
    • /
    • v.6 no.6
    • /
    • pp.810-814
    • /
    • 2004
  • This study is one of the fundamental researches for the development of future smart clothing and textile products using silver(Ag) nano powder. Our study was focused on the blocking or insulating effects of nano-processed textiles from electromagnetic waves. Also, for the surveying of the actual effect to human body, we measure the variation of electroencephalogram which is an indication of human physical symptoms. Among various textiles in this experiment, nano silver processed case has shown the best blocking performance from the electromagnetic waves, which decreases depending on the distance. As a reference model of working environment, we setup the visual stimuli object on the computer that is a source of electromagnetic wave. The power spectrum distribution and the incidence of electroencephalogram was measured. The analysed data has shown that, with nano-processed textiles, ${\beta}$ wave does not appear very often where ${\beta}$ wave appears only to illustrate the stable states of human's body. However, as for the materials without nano processing, the ratio of ${\gamma}$ waves in the total level of electroencephalogram becomes higher in spite of short exposure to visual stimuli in work environment, which shows that the worker becomes stressed. The ${\beta}$ wave electroencephalogram of all materials is drawn in calcarine fissure of occipital lobe to show the convergent distribution, and stronger with block-processed Nano Silver Silk(NSS). The study based on the potential risks of human diseases such as physical fatigue by electromagnetic waves, and has shown that the application of Nano Silver textile for human uses require a proper particle size of it which would not penetrate cellular tissues, and a proper binder and binding treatment for it. However, it is highly required for back-up researches to verify various aspects in applying nano silver to textile products.

Development of Sleeve Patterns of Structural Firefighting Protective Clothing using by 3D Body Shape and 3D Motion Analysis (3차원 인체형상과 3차원 동작분석에 의한 방화복 소매패턴 개발)

  • Han, Sul-Ah;Nam, Yun-Ja;Yoon, Hye-Jun;Lee, Sang-Hee;Kim, Hyun-Joo
    • Fashion & Textile Research Journal
    • /
    • v.14 no.1
    • /
    • pp.109-121
    • /
    • 2012
  • This study aims at developing ergonomics patterns for the sleeve of structural firefighting protective clothing through 3D motion analysis in order to ensure efficiency and safety of firefighters who are exposed to harmful environment at work. A new research pattern was developed by applying the total results of 3D motion analysis, changes of body surface length measurements, and 2D data on 3D body shape analysis on the size 3 patterns of the existing coat sleeve. For the sleeves, we used the body surface length of the range of shoulder's flexion and the joint angle of the range of wrist's ulnar deviation. And for the production of structural firefighting protective clothing using the research pattern, we recruited a recognized producer of structural firefighting protective clothing designated by KFI. Unlike everyday clothes, structural firefighting protective clothing should be able to fully protect the wearers from the harmful environment that threatens their lives and should not cause any restrictions on their movement. Therefore, the focus of research and development of such protective clothing should be placed on consistent development of new technologies and production methods that will provide protection and comfort for the wearer rather than production cost reduction or operational efficiency. This study is meaningful as it applied 3D motion analysis instead of the existing methods to develop the patterns. In particular, since 3D motion analysis enables the measurement of the range of motion, there should be continuous research on the development of ergonomics patterns that consider workers' range of motion.

Survey on addiction and mental health status of the homeless (노숙인들의 중독 및 정신건강 실태에 관한 조사)

  • Choi, Kanghyun;Tak, Jang Han;Lee, Donghwan;Kim, Sung Nyun;Lee, Youngjo
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.5
    • /
    • pp.977-985
    • /
    • 2016
  • Homelessness is recognized as a problem of lack of housing as well as a social problem entangled by complex problems such as unemployment, family breakdown, social exclusion, health and suicide. In order to search for the specificity of any particular addiction type, we conducted a survey on the addiction and mental health status of the homeless. One of our findings indicated that alcoholism was mainly found more in older homeless; however, internet game and smart phone addiction was found more in younger generations. We hope that our study is meaningful as a typification work at the current stage because there have been few studies in Korea on homeless youth and no study about homeless people's addiction problems other than alcoholism.

Quality monitoring of complex manufacturing systems on the basis of model driven approach

  • Castano, Fernando;Haber, Rodolfo E.;Mohammed, Wael M.;Nejman, Miroslaw;Villalonga, Alberto;Lastra, Jose L. Martinez
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.495-506
    • /
    • 2020
  • Monitoring of complex processes faces several challenges mainly due to the lack of relevant sensory information or insufficient elaborated decision-making strategies. These challenges motivate researchers to adopt complex data processing and analysis in order to improve the process representation. This paper presents the development and implementation of quality monitoring framework based on a model-driven approach using embedded artificial intelligence strategies. In this work, the strategies are applied to the supervision of a microfabrication process aiming at showing the great performance of the framework in a very complex system in the manufacturing sector. The procedure involves two methods for modelling a representative quality variable, such as surface roughness. Firstly, the hybrid incremental modelling strategy is applied. Secondly, a generalized fuzzy clustering c-means method is developed. Finally, a comparative study of the behavior of the two models for predicting a quality indicator, represented by surface roughness of manufactured components, is presented for specific manufacturing process. The manufactured part used in this study is a critical structural aerospace component. In addition, the validation and testing are performed at laboratory and industrial levels, demonstrating proper real-time operation for non-linear processes with relatively fast dynamics. The results of this study are very promising in terms of computational efficiency and transfer of knowledge to manufacturing industry.

Effects of Technological, Organizational, and Environmental Factors on Social Media Adoption

  • QALATI, Sikandar Ali;LI, Wenyuan;VELA, Esthela Galvan;BUX, Ali;BARBOSA, Belem;HERZALLAH, Ahmed Muhammad
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.10
    • /
    • pp.989-998
    • /
    • 2020
  • Electronic commerce is becoming a significant hub for sourcing products/services which helps organizations to connect with potential customers and gain competitive advantages, though little empirical work focuses on small businesses operating in developing countries to date. Increasingly, companies are looking to utilize social media to connect with stakeholders and pursue several benefits. This study aims to investigate the technological, organizational, and environmental (TOE) factors that influence small- and medium-sized enterprises' (SMEs) social media (SM) adoption in developing countries. This study used a closed-ended questionnaire to collect data from randomly-selected respondents (owners, executives, and managers) from SMEs in Pakistan. SMART PLS version 3.2.8 was used for path analysis of 316 responses and for structural equation modeling. The research findings include the direct influence of TOE factors (relative advantage, interactivity, visibility, top management support, and institutional pressure) on SMEs' SM adoption, and in turn SM adoption also has a positive influence on SMEs performance. Moreover, the coefficient of determination of the study showed that 77.7% of the variation in SM adoption occurs because of TOE factors and 29.8% variation in SMEs occurred because of SM adoption. This paper has implications for practitioners and scholars interested in exploring the SM adoption and usage by SMEs.