• 제목/요약/키워드: Smart vibration control

검색결과 378건 처리시간 0.023초

Adaptive MR damper cable control system based on piezoelectric power harvesting

  • Guan, Xinchun;Huang, Yonghu;Li, Hui;Ou, Jinping
    • Smart Structures and Systems
    • /
    • 제10권1호
    • /
    • pp.33-46
    • /
    • 2012
  • To reduce the vibration of cable-stayed bridges, conventional magnetorheological (MR) damper control system (CMRDS), with separate power supply, sensors and controllers, is widely investigated. In this paper, to improve the reliability and performance of the control system, one adaptive MR damper control system (AMRDS) consisting of MR damper and piezoelectric energy harvester (PEH) is proposed. According to piezoelectric effect, PEH can produce energy for powering MR damper. The energy is proportional to the product of the cable displacement and velocity. Due to the damping force changing with the energy, the new system can be adjustable to reduce the cable vibration. Compared with CMRDS, the new system is structurally simplified, replacing external sensor, power supply and controller with PEH. In the paper, taking the N26 cable of Shandong Binzhou Yellow River Bridge as example, the design method for the whole AMRDS is given, and simple formulas for PEH are derived. To verify the effectiveness of the proposed adaptive control system, the performance is compared with active control case and simple Bang-Bang semi-active control case. It is shown that AMRDS is better than simple Bang-Bang semi-active control case, and still needed to be improved in comparison with active control case.

Optimum LCVA for suppressing harmonic vibration of damped structures

  • Shum, K.M.;Xu, Y.L.;Leung, H.Y.
    • Smart Structures and Systems
    • /
    • 제20권4호
    • /
    • pp.461-472
    • /
    • 2017
  • Explicit design formulae of liquid column vibration absorber (LCVA) for suppressing harmonic vibration of structures with small inherent structural damping are developed in this study. The developed design formulae are also applicable to the design of a tuned mass damper (TMD) and a tuned liquid column damper (TLCD) for damped structures under harmonic force excitation. The optimum parameters of LCVA for suppressing harmonic vibration of undamped structures are first derived. Numerical searching of the optimum parameters of tuned vibration absorber system for suppressing harmonic vibration of damped structure is conducted. Explicit formulae for these optimum parameters are then obtained by a series of curve fitting techniques. The analytical result shows that the control performance of TLCD for reducing harmonic vibration of undamped structure is always better than that of non-uniform LCVA for same mass and length ratios. As for the effects of structural damping on the optimum parameters, it is found that the optimum tuning ratio decreases and the optimum damping ratio increases as the structural damping is increased. Furthermore, the optimum head loss coefficient is inversely proportional to the amplitude of excitation force and increases as the structural damping is increased. Numerical verification of the developed explicit design expressions is also conducted and the developed expressions are demonstrated to be reasonably accurate for design purposes.

자동차용 중공 구동축의 진동감쇠제어 연구 (A Study of Vibration Damping Control for Hollow Drive Shaft)

  • 박정헌;홍성근;이광희;이철희;김철현;조원오
    • 한국소음진동공학회논문집
    • /
    • 제22권6호
    • /
    • pp.582-587
    • /
    • 2012
  • This paper presents a solution of the vibration reduction in the hollow shafts by using magentorehological( MR) elastomer. Proposed active damping structure is built by embedding the MR elastomers whose elastic modulus is controllable by an applied magnetic field. MR elastomers consist of synthetic rubber filled with micron-sized magnetizable particles. For reduction of vibration, dynamic damper of hollow shaft is designed by using MR elastomer and equipped in the hollow shaft for the application to drive shaft. Experiment results are shown through the experiments to confirm the effect of MR elastomer dynamic damper for vibration reduction. Thus, the designed damping structure can be applied to vibration absorber used in drive shafts as well as the propeller shafts.

Design formulas for vibration control of sagged cables using passive MR dampers

  • Duan, Yuanfeng;Ni, Yi-Qing;Zhang, Hongmei;Spencer, Billie F. Jr.;Ko, Jan-Ming;Dong, Shenghao
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.537-551
    • /
    • 2019
  • In this paper, a method for analyzing the damping performance of stay cables incorporating magnetorheological (MR) dampers in the passive control mode is developed taking into account the cable sag and inclination, the damper coefficient, stiffness and mass, and the stiffness of damper support. Both numerical and asymptotic solutions are obtained from complex modal analysis. With the asymptotic solution, analytical formulas that evaluate the equivalent damping ratio of the sagged cable-damper system in consideration of all the above parameters are derived. The main thrust of the present study is to develop an general design formula and a universal curve for the optimal design of MR dampers for adjustable passive control of sagged cables. Two sag-affecting coefficients are derived to reflect the effects of cable sag on the maximum attainable damping ratio and the optimal damper coefficient. For the cable configurations commonly used in cable-stayed bridges, the sag-affecting coefficients are directly expressed in terms of the sag-extensibility parameter to facilitate the control design. A case study on adjustable passive vibration control of the longest cable (536 m) on Stonecutters Bridge is carried out to demonstrate the influence of the sag for the damper design, and to figure out the necessity of adjustability of damper coefficients for achieving maximum damping ratio for different vibration modes.

Safe Bike : Secure your Bicycle with this smart Arduino based GPS device

  • Godfrey, Daniel;Song, Mi-Hwa
    • International journal of advanced smart convergence
    • /
    • 제5권3호
    • /
    • pp.16-26
    • /
    • 2016
  • This proposed project is about a bicycle anti theft devised system which helps people protect the bicycle from theft and helps to track the stolen bicycle's location using a smart phone. Safety bike uses two main devices to keep the bicycle secured, the vibration sensor and GPS sensor. The purpose of this project is to put all these small devices into one well connected system which will help the bicycle owner have more control over the security of his own bicycle. The whole system can be divided into two main parts. The first part is about the hardware development whereby all electronics components are connected via the circuit design using wire wrapping technique. This hardware part includes, a vibrations sensor, a GPS receiver, a toggle switch, LED light, Bluetooth and a buzzer. Wireless Bluetooth signals are used as the means of communication between the smartphone and the microcontroller. The second part is the software part which is being to program and control the whole system. The program is written using MikroBasic, a full-featured Basic compiler for microcontroller based systems. In conclusion, this system is designed to enable user to have control in securing his/her bicycle also being able to find and locate it at any time using GPS receiver and mobile android application.

Review of Active Rotor Control Research in Canada

  • Feszty, Daniel;Nitzsche, Fred
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권2호
    • /
    • pp.93-114
    • /
    • 2011
  • The current status of Canadian research on rotor-based actively controlled technologies for helicopters is reviewed in this paper. First, worldwide research in this field is overviewed to put Canadian research into context. Then, the unique hybrid control concept of Carleton University is described, along with its key element, the "stiffness control" concept. Next, the smart hybrid active rotor control system (SHARCS) projected's history and organization is presented, which aims to demonstrate the hybrid control concept in a wind tunnel test campaign. To support the activities of SHARCS, unique computational tools, novel experimental facilities and new know-how had to be developed in Canada, among them the state-of-the-art Carleton Whirl Tower facility or the ability to design and manufacture aeroelastically scaled helicopter rotors for wind tunnel testing. In the second half of the paper, details are provided on the current status of development on the three subsystems of SHARCS, i.e. that of the actively controlled tip, the actively controlled flap and the unique stiffness-control device, the active pitch link.

ER 유체를 이용한 반능동 완충장치의 동적 특성 (Dynamic Characteristics of Semi-Active Shock Absorber Using Electrorheological Fluid)

  • 김도형;조기대;정용현;이인
    • 한국소음진동공학회논문집
    • /
    • 제11권4호
    • /
    • pp.13-21
    • /
    • 2001
  • Electrorheological(ER) fluid is a kind of smart material with variable shear stress and dynamic viscosity under various electric field intensity. Electric field can control the damping characteristics of ER damper. The objective of this study is the analysis of the performance of ER damper and its application to shock absorber. Idealized nonlinear Bingham plastic shear flow model is used to predict the velocity profile between electrodes. Cylindrical dashpot ER damper with moving electrode is constructed and tested under various electric fields. The analytic and experimental results for damping force are compared and discussed. Drop test system using ER damper is prepared to identify transient vibration characteristics. The rebound is eased as the applied electric field increases. When semi-active control algorithm is applied, rebound phenomenon disappears and vibration energy level decays faster than the case of zero electric field.

  • PDF

Semi-active control on long-span reticulated steel structures using MR dampers under multi-dimensional earthquake excitations

  • Zhou, Zhen;Meng, Shao-Ping;Wu, Jing;Zhao, Yong
    • Smart Structures and Systems
    • /
    • 제10권6호
    • /
    • pp.557-572
    • /
    • 2012
  • This paper focuses on the vibration control of long-span reticulated steel structures under multi-dimensional earthquake excitation. The control system and strategy are constructed based on Magneto-Rheological (MR) dampers. The LQR and Hrovat controlling algorithm is adopted to determine optimal MR damping force, while the modified Bingham model (MBM) and inverse neural network (INN) is proposed to solve the real-time controlling current. Three typical long-span reticulated structural systems are detailedly analyzed, including the double-layer cylindrical reticulated shell, single-layer spherical reticulated shell, and cable suspended arch-truss structure. Results show that the proposed control strategy can reduce the displacement and acceleration effectively for three typical structural systems. The displacement control effect under the earthquake excitation with different PGA is similar, while for the cable suspended arch-truss, the acceleration control effect increase distinctly with the earthquake excitation intensity. Moreover, for the cable suspended arch-truss, the strand stress variation can also be effectively reduced by the MR dampers, which is very important for this kind of structure to ensure that the cable would not be destroyed or relaxed.

Interstory-interbuilding actuation schemes for seismic protection of adjacent identical buildings

  • Palacios-Quinonero, Francisco;Rubio-Massegu, Josep;Rossell, Josep M.;Rodellar, Jose
    • Smart Structures and Systems
    • /
    • 제24권1호
    • /
    • pp.67-81
    • /
    • 2019
  • Rows of closely adjacent buildings with similar dynamic characteristics are common building arrangements in residential areas. In this paper, we present a vibration control strategy for the seismic protection of this kind of multibuilding systems. The proposed approach uses an advanced Linear Matrix Inequality (LMI) computational procedure to carry out the integrated design of distributed multiactuation schemes that combine interbuilding linking devices with interstory actuators implemented at different levels of the buildings. The controller designs are formulated as static output-feedback H-infinity control problems that include the interstory drifts, interbuilding approachings and control efforts as controlled-output variables. The advantages of the LMI computational procedure are also exploited to design a fully-decentralized velocity-feedback controller, which can define a passive control system with high-performance characteristics. The main ideas are presented by means of a system of three adjacent five-story identical buildings, and a proper set of numerical simulations are conducted to demonstrate the behavior of the different control configurations. The obtained results indicate that interstory-interbuilding multiactuation schemes can be used to design effective vibration control systems for adjacent buildings with similar dynamic characteristics. Specifically, this kind of control systems is able to mitigate the vibrational response of the individual buildings while maintaining reduced levels of pounding risk.

Experimental study of controllable MR-TLCD applied to the mitigation of structure vibration

  • Cheng, Chih-Wen;Lee, Hsien Hua;Luo, Yuan-Tzuo
    • Smart Structures and Systems
    • /
    • 제15권6호
    • /
    • pp.1481-1501
    • /
    • 2015
  • MR-TLCD (Magneto-Rheological Tuned Liquid Column Damper) is a new developed vibration control device, which combines the traditional passive control property with active controllability advantage. Based on traditional TLCD governing equation, this study further considers MR-fluid viscosity in the equation and by transforming the non-linear damping term into an equivalent linear damping, a solution can be obtained. In order to find a countable set of parameters for the design of the MR-TLCD system and also to realize its applicability to structures, a series of experimental test were designed and carried out. The testing programs include the basic material properties of the MR-fluid, the damping ratio of a MR-TLCD and the dynamic responses for a frame structure equipped with the MR-TLCD system subjected to strong ground excitations. In both the analytical and experimental results of this study, it is found that the accurately tuned MR-TLCD system could effectively reduce the dynamic response of a structural system.