• Title/Summary/Keyword: Smart vibration control

Search Result 378, Processing Time 0.021 seconds

Structural Vibration Analysis of Smart UAV 4-Degree of Freedom Ground Test System (스마트 무인기 4자유도 지상시험치구 구조진동해석)

  • Park, Kang-Kyun;Choi, Hyun-Chul;Kim, Dong-Man;Kim, Dong-Hyun;Ahn, Oh-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.593-598
    • /
    • 2009
  • In this study we present results for the design of ground test system for 4 degree of freedom(DOF) control test is one of the smart UAV ground test. This system is equipped with real smart UAV and Z direction DOF and 3 direction rotation DOF, Ensuring safe operation of the Smart UAV is a top priority. To this end, it is required to do structure analysis and test verification to confirm the design margin and safety. Based on the analysis, the ground test system has been redesigned to meet the structural conditions.

  • PDF

A study on vibration characteristics and tuning of smart cantilevered beams featuring an electo-rheological fulid

  • Park, S.B.;Cheong, C.C.;Suh, M.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.1
    • /
    • pp.134-141
    • /
    • 1993
  • Electro-Rheological(ER) fluids undergo a phase-change when subjected to an external electic field, and this phase-change typically manifests itself as a many-order-of-magnitude change in the rheological behavior. This phenomenon permits the global stiffness and energy- dissipation properties of the beam structures to be tuned in order to synthesize the desired vibration characteristics. This paper reports on a proof-of-concept experimental investigation focussed on evaluation the vibration properties of hollow cantilevered beams filled with an ER fluid. and consequently deriving an empirical model for predicting field-dependent vibration characteristics. A hydrous-based ER fluid consisting of corn starch and silicone oil is employed. The beams are considered to be uniform viscoelastic materials and modelled as a viscously-damped harmonic oscillator. Natural frequency, damping ratio and elastic modulus are evaluated with respect to the electric field and compared among three different beams: two types of different volume fraction of ER fluid and one type of different particle concentration of ER fluid by weight. Transient and forced vibration responses are examined in time domain to demonstrate the validity of the proposed empirical model and to evaluate the feasibility of using the ERfluid as an actuator in a closed-loop control system.

  • PDF

Performance assessment of multi-hazard resistance of Smart Outrigger Damper System (스마트 아웃리거 댐퍼시스템의 멀티해저드 저항성능평가)

  • Kim, Hyun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.139-145
    • /
    • 2018
  • An outrigger system is used widely to increase the lateral stiffness of high-rise buildings, resulting in reduced dynamic responses to seismic or wind loads. Because the dynamic characteristics of earthquake or wind loads are quite different, a smart vibration control system associated with an outrigger system can be used effectively for both seismic and wind excitation. In this study, an adaptive smart structural control system based on an outrigger damper system was investigated for the response reduction of multi-hazards, including seismic and wind loads. A MR damper was employed to develop the smart outrigger damper system. Three cities in the U.S., L.A., Charleston, and Anchorage, were used to generate multi-hazard earthquake and wind loads. Parametric studies on the MR damper capacity were performed to investigate the optimal design of the smart outrigger damper system. A smart control algorithm was developed using a fuzzy controller optimized by a genetic algorithm. The analytical results showed that an adaptive smart structural control system based on an outrigger damper system can provide good control performance for multi-hazards of earthquake and wind loads.

Real-time Active Vibration Control of Smart Structure Using Adaptive PPF Controller (적응형 PPF 제어기를 이용한 지능구조물의 실시간 능동진동제어)

  • Heo, Seok;Lee, Seung-Bum;Kwak, Moon-Kyu;Baek, Kwang-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.4
    • /
    • pp.267-275
    • /
    • 2004
  • This research is concerned with the development of a real-time adaptive PPF controller for the active vibration suppression of smart structure. In general, the tuning of the PPF controller is carried out off-line. In this research, the real-time learning algorithm is developed to find the optimal filter frequency of the PPF controller in real time and the efficacy of the algorithm is proved by implementing it in real time. To this end, the adaptive algorithm is developed by applying the gradient descent method to the predefined performance index, which is similar to the method used popularly in the optimization and neural network controller design. The experiment was carried out to verify the validity of the adaptive PPF controller developed in this research. The experimental results showed that adaptive PPF controller is effective for active vibration control of the structure which is excited by either impact or harmonic disturbance. The filter frequency of the PPF controller is tuned in a very short period of time thus proving the efficiency of the adaptive PPF controller.

Vibration Suppression of Smart Structures Using PPF and SRF Control Techniques (PPF와 SRF 제어기법을 사용한 지능구조물의 능동진동제어)

  • 라완규;곽문규;윤광준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.400-406
    • /
    • 1997
  • This paper is concerned with the active vibration control of grid structure by means of piezoceramic actuators and sensors. The control technique used in this paper is based on the positive position feedback(PPF) and the strain rate feedback(SRF) control, which have been successfully used for the vibration control of beam structures. A new control methodology is developed using the PPF and SRF controller of single-input single-output method. The PPF controller is used for the suppression of first bending mode and SRF controller is used for the suppression of higher vibration modes of grid structure. Electric circuits for the realization of control schemes are explained in detail. The control techniques prove its effectiveness by experiments.

  • PDF

Multi-objective Fuzzy Control of a Spacial Structure using Smart Base Isolation System (스마트 면진시스템을 이용한 대공간 구조물의 다목적 퍼지제어)

  • Kang, Joo-Won;Kim, Hyun-Su;Lim, Jun-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.2
    • /
    • pp.89-99
    • /
    • 2011
  • In this study, a smart base isolation system has been proposed to reduce dynamic responses of a spacial structure subjected to seismic excitation. MR dampers and low damping elastomeric bearings were used to compose a smart base isolation system and its vibration control performance has been investigated compared to that of the optimally designed lead-rubber bearing (LRB) isolation system. Control performance of smart base isolation system depends on control algorithm. Fuzzy controller was used in this study to effectively control the spacial structure having a smart base isolation system. Dynamic responses of the spacial structure with isolation system is conflict with base drifts and thus these two responses are selected as objective functions to apply multi-objective genetic algorithm to optimization of fuzzy controller. Based on numerical simulation results, it has been shown that the smart base isolation system proposed in this study can drastically reduce base drifts and seismic responses of the example spacial structure in comparison with the optimally designed LRB isolation system.

Noise Control in a Duct Using Ring-type Smart Foam (환형 서마트 폼을 이용한 관 내부의 소음제어)

  • 한제헌;김표재;강연준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.426-430
    • /
    • 2001
  • Conventional smart foam is not applicable to active noise control in a duct having flow. Thus, this paper presents a ring-type smart foam as an alternative. The ring-type smart foam consists of polyurethane acoustic foam of lining shape and PVDF film embedded in the foam. The embedded PVDF element acts as an actuator to reduce noise at lower frequencies and the foam absorbs noise at higher frequencies. A feedforward adaptive filtered-x LMS controller is used to minimize the signal from the error microphone. Experiments are executed to reduce broadband and tonal noise.

  • PDF

Adaptive-length pendulum smart tuned mass damper using shape-memory-alloy wire for tuning period in real time

  • Pasala, Dharma Theja Reddy;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.203-217
    • /
    • 2014
  • Due to the shift in paradigm from passive control to adaptive control, smart tuned mass dampers (STMDs) have received considerable attention for vibration control in tall buildings and bridges. STMDs are superior to tuned mass dampers (TMDs) in reducing the response of the primary structure. Unlike TMDs, STMDs are capable of accommodating the changes in primary structure properties, due to damage or deterioration, by tuning in real time based on a local feedback. In this paper, a novel adaptive-length pendulum (ALP) damper is developed and experimentally verified. Length of the pendulum is adjusted in real time using a shape memory alloy (SMA) wire actuator. This can be achieved in two ways i) by changing the amount of current in the SMA wire actuator or ii) by changing the effective length of current carrying SMA wire. Using an instantaneous frequency tracking algorithm, the dominant frequency of the structure can be tracked from a local feedback signal, then the length of pendulum is adjusted to match the dominant frequency. Effectiveness of the proposed ALP-STMD mechanism, combined with the STFT frequency tracking control algorithm, is verified experimentally on a prototype two-storey shear frame. It has been observed through experimental studies that the ALP-STMD absorbs most of the input energy associated in the vicinity of tuned frequency of the pendulum damper. The reduction of storey displacements up to 80 % when subjected to forced excitation (harmonic and chirp-signal) and a faster decay rate during free vibration is observed in the experiments.

Vibration mode control of a smart plate containing electro-rheological fluid (ER유체를 이용한 스마트 평판의 진동모드 제어)

  • 정상봉;박용균;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.451-455
    • /
    • 1997
  • This paper presents vibration mode control of a smart plate containing electro-rheological (ER) fluid between elastic face layers. Following the composition of a silicone oil-based ER fluid, the ER fluid-embedded plate partitioned into four sections is constructed. Then, an extensive modal test is experimentally carried out to identify field-dependent modal parameters such as mode shapes and natural frequencies of the structure with respect to different are subjected to electric fields. The distilled results from the experiment exhibit that the ER fluid can be effectively employed in a continuous fashion to tune modal behaviors of the distributed parameter systems,

  • PDF