• Title/Summary/Keyword: Smart vibration control

Search Result 378, Processing Time 0.025 seconds

Vibration Control of Stay Cable Using Smart Passive Damping System (스마트 수동 감쇠 시스템을 이용한 사장 케이블의 진동 제어)

  • Jung Hyung-Jo;Cho Sang-Won;Jang Ji-Eun;Lee In-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.497-504
    • /
    • 2005
  • Stay cables, such as are used in cable-stayed bridges, are prone to vibration due to their low inherent damping characteristics. Several methods have been proposed and implemented to mitigate this problem, though each has its limitations. Recently some studies have shown that active and semiactive control system using MR (Magnetorheological) damper can potentially achieve both higher performance levels than passive control system and adaptability with few of the detractions. However, a control system including a power supply, controller, and sensors is required to maximize the performance of the MR damper and this complicated control system is not effective to most of large civil structures. This paper proposes a smart passive damping system using MR dampers by introducing electromagnetic induction (EMI) system as an external power source to MR damper and verified the performance of smart passive damping system for mitigating the vibration of stay cables. The performances of smart passive damping system are compared with those of linear viscous damper and passive-mode MR damper.

  • PDF

Development of Power Amplifier for Piezoelectric Actuator and Control Algorithm Realization System for Active Vibration Control of Structures (구조물 능동진동제어를 위한 압전 작동기 구동 파워앰프와 제어 알고리즘 구현 시스템의 개발)

  • Lee, Wan-Joo;Kwak, Moon-K.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.2
    • /
    • pp.170-178
    • /
    • 2012
  • This paper is concerned with the development of power amplifier and controller for piezoelectric actuator and sensor used in smart structures. Even though a high-voltage power amplifier is provided in the form of an operational amplifier, a very high DC voltage is still necessary as a power supply. In this study, we propose a low-cost design for the power amplifier including the DC power supply. We also need a controller on which a control algorithm will be mounted. In general, a digital signal processing chip is popularly used because of high speed. However, only commercial product is available for smart structure applications. In this paper, a controller consisting of a DSP and electronic circuits suitable for piezoelectric sensor and actuator pair is proposed. To validate the proposed controller with power amplifier, experiment on smart structure was carried out. The experimental results show that the proposed control system can be effectively used for smart structure applications with low cost.

Study on the Vibration Control Characteristics of ER Actuator for Application in Intelligence Process Control Systems(PLC) (지능형 공정제어 시스템 적용을 위한 ER 작동기의 진동제어 특성에 관한 연구)

  • Jang, Sung-Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.1
    • /
    • pp.49-55
    • /
    • 2005
  • This paper presents experiments on the evaluation of characteristics of ER fluids used for vibration control of application in intelligence type process control systems. Dynamic characteristics of the actuator(beam) embedded with the ER fluid can be controlled by changing the strength of the electric field applied on the ER fluids, thus provides a mean to avoid the resonance. In case electric field is supplied to the smart structure with ER fluids, vibration energy is dissipated more than the beam without electric field, because particles in ER fluid form a chain structure in the presence of electric field. The damping and stiffness of the beam with ER fluid are increased when the applied electric field increases. The characteristics of damping and stiffness of the ER fluid with various electric field strength were investigated by conducting a vibration test of the beam with ER fluid. If it applies characteristics of the ER fluids, it will be able to apply in the PLC control system for the vibration which occurs from process system.

  • PDF

Vibration Characteristics and Control of Smart Cantilever Beams Containing an Electro-Rheological Fluid An Experimental Investigation (전기 유동유체를 함유하는 지능외팔보의 진동특성 및 제어 실험적 고찰)

  • Choi, Seung-Bok;Park, Yong-Kun;Suh, Moon-Suk
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1649-1657
    • /
    • 1993
  • This paper reports on a proof-of-concept experimental investigation focused on evaluating the vibration characteristics and control of smart hollow cantilever beams filled with an electro-rheological(ER) fluid. The beams are considered to be of uniform viscoelastic materials and modelled as a viscously-damped harmonic oscillator. Electric field-dependent natural frequencies, loss factors and complex moduli are evaluated and compared among three different beams : two types of different volume fraction of ER fluid and one type of different particle concentration of ER fluid by weight. Modal characteristics of the beams are observed in both the absence and the presence of electric potentials. It is also shown that by constructing active control algorithm the removal of structural resonances and the suppression of tip deflection are obtained. This result provides the feasiblility of ER fluids as an active vibration control element.

Sound Intensity Control in a Duct Using Smart Foam (스마트 폼을 이용한 덕트 내의 음향 인텐시티 제어)

  • 한제헌;강연준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1132-1137
    • /
    • 2001
  • The smart foam that is first proposed by Fuller(2) is not applicable to active noise control in a duct having flow. Thus. this paper presents the ring-type smart foam as an alternative. The ring-type smart foam consists of polyurethane acoustic foam of lining shape and PVDF film embedded along the mid-surface of the foam lining. A feedforward adaptive filtered-x LMS controller is used to minimize the signal from the error microphone. To enlarge quiet sound region. two error microphones are used to update system modeling filter (SIMO method). Sound intensity control using the ring-type smart foam is also discussed

  • PDF

Active and Semi-Active Vibration Control of Piezoelectric Smart Structures Using a Pseudo-Sensor-Output-Feedback Method (PSOF 방법을 이용한 압전 지능 구조물의 능동 및 반능동 진동제어)

  • 김영식;김영태;오동영
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.70-76
    • /
    • 1999
  • This paper presents a pseudo-sensor-output-feedback(PSOF) method for the vibration suppression of the flexible piezoelectric smart structures. This method reduces the modeling errors using pseudo sensors in the output equation formulation. It also reduces computation time in practice. since the output equation does not need the state observer required in the state space equation. Experimental works are performed for the validation of theoretical predictions with the piezoelectric sensor and actuator bonded on the cantilever beam. An algorithm based on the sliding mode control theory is developed and analyzed for the robustness to the modeling errors and parameter uncertainties. This study also discusses the characteristics of the active and semi-active systems.

  • PDF

Experimental evaluation of discrete sliding mode controller for piezo actuated structure with multisensor data fusion

  • Arunshankar, J.;Umapathy, M.;Bandhopadhyay, B.
    • Smart Structures and Systems
    • /
    • v.11 no.6
    • /
    • pp.569-587
    • /
    • 2013
  • This paper evaluates the closed loop performance of the reaching law based discrete sliding mode controller with multisensor data fusion (MSDF) in real time, by controlling the first two vibrating modes of a piezo actuated structure. The vibration is measured using two homogeneous piezo sensors. The states estimated from sensors output are fused. Four fusion algorithms are considered, whose output is used to control the structural vibration. The controller is designed using a model identified through linear Recursive Least Square (RLS) method, based on ARX model. Improved vibration suppression is achieved with fused data as compared to single sensor. The experimental evaluation of the closed loop performance of sliding mode controller with data fusion applied to piezo actuated structure is the contribution in this work.

Hybrid Vibration Control of Smart Laminated Composite Beams using Piezoelectric and Viscoelastic Material

  • Kang, Young-Kyu
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.1
    • /
    • pp.37-42
    • /
    • 2003
  • Active control of flexural vibrations of smart laminated composite beams has been carried out using piezoceramic sensor/actuator and viscoelastic material. The beams with passive constrained layer damping have been analyzed by formulating the equations of motion through the use of extended Hamilton's principle. The dynamic characteristics such as damping ratio and modal damping of the beam are calculated for various fiber orientations by means of iterative complex eigensolution method. This paper addresses a design strategy of laminated composite under flexural vibrations to design structure with maximum possible damping capacity.

Vibration and Position Tracking Control of a Smart Structure Using SMA Actuators (형상기억합금 작동기를 이용한 스마트 구조물의 진동 및 위치 추적제어)

  • Park, N.J.;Choi, S.B.;Cheong, C.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.155-163
    • /
    • 1996
  • This paper presents vibration and position tracking control of a smart structure using shape memory alloy(SMA) actuators. A governing equation of motion of the proposed structure is obtained via Hamilton's princeple. The dynamic characteristics of the SMA actuator are experimentally identified and incorporated with the governing equation to furnish a control system model. Subsequently, a sliding mode controller which has inherent robustness to external disturbances is formulated on the basis of the sliding mode conplacement, and also for the position tracking control of desired trajectories with low-frequency sine and square waves.

  • PDF

Seismic Response Control of Spacial Arch Structures using Multiple Smart TMD (다중 스마트 TMD를 이용한 대공간 아치구조물의 지진응답 제어)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.1
    • /
    • pp.43-51
    • /
    • 2016
  • A novel vibration control method for vibration reduction of a spacial structure subjected to earthquake excitation was proposed in this study. Generally, spatial structures have various vibration modes involving high-order modes and their natural frequencies are closely spaced. Therefore, in order to control these modes, a spatially distributed MTMDs (Multiple TMDs) method is proposed previously. MR (Magnetorheological) damper were used to enhance the control performance of the MTMDs. Accordingly, MSTMDs (Multiple Smart TMDs) were proposed in this study. An arch structure was used as an example structure because it has primary characteristics of spatial structures and it is a comparatively simple structure. MSTMDs were applied to the example arch structure and the seismic control performance were evaluated based on the numerical simulation. Fuzzy logic control algorithm (FLC) was used to generate command voltages sent for MSTMSs and the FLC was optimized by genetic algorithm. Based on the analytical results, it has been shown that the MSTMDs effectively decreased the dynamic responses of the arch structure subjected to earthquake loads.