• Title/Summary/Keyword: Smart ship

Search Result 168, Processing Time 0.021 seconds

A Study on the Design of Digital Twin-Based Communication Tools for Smart Port and Autonomous Ship (스마트항만-자율운항선박 연계를 위한 디지털 트윈 기반 커뮤니케이션 도구 설계 연구)

  • Cho Yuseong;Cho Yongdeok;Koo Hanmo;Koopo Kwon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.362-365
    • /
    • 2022
  • With the development of the 4th industrial revolution technology, smartization in various fields is accelerating. The shipping and logistics industry is also promoting smartization by combining advanced new technologies such as digital twin, Internet of Things, and artificial intelligence. In Korea, the Ministry of Maritime Affairs and Fisheries is promoting a strategy to spread the smart shipping logistics system in line with the changing global shipping logistics trend, and through this, it is creating a foundation for smart shipping logistics. This study aims to present the concept of a communication tool that recognizes the importance of communication between each logistics entity and exchanges opinions between logistics entities in a virtual digital twin environment to cope with the changing shipping logistics process. In addition, for the development of these communication tools, this study derive a software design model, including architecture.

  • PDF

The heavy load control of ship's battery connected power management system (배터리 연계형 선박 전력관리시스템의 중부하 제어)

  • Kang, Young-Min;Jang, Jae-Hee;Oh, Jin-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1455-1463
    • /
    • 2017
  • Global economy has recorded low growth, low consumption, high unemployment rate, high risk, short boom and long recession. As a result, maritime economy declines and the reduction of maintenance costs is inevitable. Thus, Studies such as green ship, eco ship, and smart ship are being actively conducted to save energy of ship. Power management system that use batteries in green ship is an important research area. In this paper, we analyze the heavy load control of a power management system of a general ship using only a generator, and study a heavy load control algorithm for a battery connected power management system. To study this, a structure of battery connected power management system is proposed and a battery connected power simulator was constructed based on the proposed system. Through the simulator, the operation of the battery according to the heavy load control is defined and confirmed in the battery connected power management system.

A Study on Image-Based Mobile Robot Driving on Ship Deck (선박 갑판에서 이미지 기반 이동로봇 주행에 관한 연구)

  • Seon-Deok Kim;Kyung-Min Park;Seung-Yeol Wang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1216-1221
    • /
    • 2022
  • Ships tend to be larger to increase the efficiency of cargo transportation. Larger ships lead to increased travel time for ship workers, increased work intensity, and reduced work efficiency. Problems such as increased work intensity are reducing the influx of young people into labor, along with the phenomenon of avoidance of high intensity labor by the younger generation. In addition, the rapid aging of the population and decrease in the young labor force aggravate the labor shortage problem in the maritime industry. To overcome this, the maritime industry has recently introduced technologies such as an intelligent production design platform and a smart production operation management system, and a smart autonomous logistics system in one of these technologies. The smart autonomous logistics system is a technology that delivers various goods using intelligent mobile robots, and enables the robot to drive itself by using sensors such as lidar and camera. Therefore, in this paper, it was checked whether the mobile robot could autonomously drive to the stop sign by detecting the passage way of the ship deck. The autonomous driving was performed by detecting the passage way of the ship deck through the camera mounted on the mobile robot based on the data learned through Nvidia's End-to-end learning. The mobile robot was stopped by checking the stop sign using SSD MobileNetV2. The experiment was repeated five times in which the mobile robot autonomously drives to the stop sign without deviation from the ship deck passage way at a distance of about 70m. As a result of the experiment, it was confirmed that the mobile robot was driven without deviation from passage way. If the smart autonomous logistics system to which this result is applied is used in the marine industry, it is thought that the stability, reduction of labor force, and work efficiency will be improved when workers work.

A Study on Forecasting Manpower Demand for Smart Shipping and Port Logistics (스마트 해운항만물류 인력 수요 예측에 관한 연구)

  • Sang-Hoon Shin;Yong-John Shin
    • Journal of Navigation and Port Research
    • /
    • v.47 no.3
    • /
    • pp.155-166
    • /
    • 2023
  • Trend analysis and time series analysis were conducted to predict the demand of manpower under the smartization of shipping and port logistics with transportation survey data of Statistic Korea during the period from 2000 to 2020 and Statistical Yearbook data of Korean Seafarers from 2004 to 2021. A linear regression model was adopted since the validity of the model was evaluated as the highest in forecasting manpower demand in the shipping and port logistics industry. As a result of forecasting the demand of manpower in autonomous ship, remote ship management, smart shipping business, smart port, smart warehouse, and port logistics service from 2021 to 2035, the demand for smart shipping and port logistics personnel was predicted to increase to 8,953 in 2023, 20,688 in 2030, and 26,557 in 2035. This study aimed to increase the predictability of manpower demand through objective estimation analysis, which has been rarely conducted in the smart shipping and port logistics industry. Finally, the result of this research may help establish future strategies for human resource development for professionals in smart shipping and port logistics by utilizing the demand forecasting model described in this paper.

An Establishment of Super Wi-Fi Environment in Ships Based on UHF System of TMS

  • Kim, Jungwoo;Son, Jooyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2103-2123
    • /
    • 2018
  • Ships built today are larger in scale and feature more complex structures. The ever-evolving systems used on board a ship require vast amounts of data processing. In the future, with the advent of smart ships, unmanned ships and other next-generation ships, the volumes of data to be processed will continue to increase. Yet, to date, ship data has been processed using wired networks. Placed at fixed locations, the nodes on wired networks often fail to process data from mobile devices. Despite many attempts made to use Wi-Fi on ships just as on land to create wireless networks, Wi-Fi has hardly been available due to the complex metal structures of ships. Therefore, Wi-Fi on ships has been patchy as the ship-wide total Wi-Fi coverage has not properly implemented. A new ship-wide wireless network environment is part of the technology conducive to the shipbuilding industry. The wireless network environment should not only serve the purpose of communication but also be able to manage and control multiple features in real-time: fault diagnostics, tracking, accident prevention and safety management. To better understand the characteristics of wireless frequencies for ships, this paper tests the widely used TETRA, UHF and Wi-Fi and sheds light on the features, advantages and disadvantages of each technology in ship settings. The proposed deployment of a Super Wi-Fi network leveraging the legacy UHF system of TMS generates a ship-wide wireless network environment. The experimental findings corroborate the feasibility of the proposed ship-wide Super Wi-Fi network environment.

Artificial Intelligence for Autonomous Ship: Potential Cyber Threats and Security (자율 운항 선박의 인공지능: 잠재적 사이버 위협과 보안)

  • Yoo, Ji-Woon;Jo, Yong-Hyun;Cha, Young-Kyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.2
    • /
    • pp.447-463
    • /
    • 2022
  • Artificial Intelligence (AI) technology is a major technology that develops smart ships into autonomous ships in the marine industry. Autonomous ships recognize a situation with the information collected without human judgment which allow them to operate on their own. Existing ship systems, like control systems on land, are not designed for security against cyberattacks. As a result, there are infringements on numerous data collected inside and outside the ship and potential cyber threats to AI technology to be applied to the ship. For the safety of autonomous ships, it is necessary to focus not only on the cybersecurity of the ship system, but also on the cybersecurity of AI technology. In this paper, we analyzed potential cyber threats that could arise in AI technologies to be applied to existing ship systems and autonomous ships, and derived categories that require security risks and the security of autonomous ships. Based on the derived results, it presents future directions for cybersecurity research on autonomous ships and contributes to improving cybersecurity.

Special Theme_ IT조선 융합 - IT Expert Interview

  • O, Mun-Gyun
    • TTA Journal
    • /
    • s.126
    • /
    • pp.24-29
    • /
    • 2009
  • IT조선 융합의 목적은 조선산업에 IT기술을 접목해 조선산업의 초인류화를 달성하여 향후 5~10년 후에도 조선강국을 유지하고자 하는 데 있습니다. 이를 위해 정부에서는 제품의 고기능화 및 제조업의 고부가가치화를 위해 IT산업의 주력산업과 융합을 통한 10대 전력산업 중심의 이행계획으로 'IT융합 발전 전략'을 마련했습니다. IT조선 융합 분야에서는 IT융합을 통한 선박건조(Digital Shipyard), 선박통합통신망(SAN)이 적용된 지능형 선박(Smart Ship), 항로최적화 등을 위한 선박운항 기술개발 등이 고려될 수 있습니다. 국제적으로 EU, 미국, 일본 등에서 대형 프로젝트를 통해 기술개발을 완료하고 e-Navigation 정책의 국제적 합의 도출을 기다리는 상황입니다. e-Navigation은 선박의 안전항해를 실현하기 위한 방법으로써 선박에 사용되는 IT기자재의 표준화와 항해사의 의사결정을 도울 수 있는 도구 개발에 핵심을 두고 있습니다. 이를 위해 선내 모둔 기자재는 네트워크에 연결되어 선박의 항행정보와 선박기자재의 운전정보 등이 실시간으로 모니터링 되고 용이하게 제어되어야 하며, 이러한 정보는 육상에서도 모니터링 되고 필요시 육상에서 항해사의 의사결정을 도울 수 있어야 합니다. 정보교환을 위해서는 선박과 육상(Ship-Shore), 선박과 선박(Ship-Ship) 사이에 끊임없고 신뢰할 수 있는 통신채널이 유지되어야만 가능합니다. 이를 기반으로 e-Navigation의 최종 실현목표인 해양환경보호 및 항해 안전과 선박의 안전을 달성할 수 있으므로 표준화 분야도 이 범주 내에서 이루어져야 할 것입니다.

  • PDF

Resistance Performance Simulation of Simple Ship Hull Using Graph Neural Network (그래프 신경망을 이용한 단순 선박 선형의 저항성능 시뮬레이션)

  • TaeWon, Park;Inseob, Kim;Hoon, Lee;Dong-Woo, Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.6
    • /
    • pp.393-399
    • /
    • 2022
  • During the ship hull design process, resistance performance estimation is generally calculated by simulation using computational fluid dynamics. Since such hull resistance performance simulation requires a lot of time and computation resources, the time taken for simulation is reduced by CPU clusters having more than tens of cores in order to complete the hull design within the required deadline of the ship owner. In this paper, we propose a method for estimating resistance performance of ship hull by simulation using a graph neural network. This method converts the 3D geometric information of the hull mesh and the physical quantity of the surface into a mathematical graph, and is implemented as a deep learning model that predicts the future simulation state from the input state. The method proposed in the resistance performance experiment of simple hull showed an average error of about 3.5 % throughout the simulation.

Estimating Hydrodynamic Coefficients of Real Ships Using AIS Data and Support Vector Regression

  • Hoang Thien Vu;Jongyeol Park;Hyeon Kyu Yoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.198-204
    • /
    • 2023
  • In response to the complexity and time demands of conventional methods for estimating the hydrodynamic coefficients, this study aims to revolutionize ship maneuvering analysis by utilizing automatic identification system (AIS) data and the Support Vector Regression (SVR) algorithm. The AIS data were collected and processed to remove outliers and impute missing values. The rate of turn (ROT), speed over ground (SOG), course over ground (COG) and heading (HDG) in AIS data were used to calculate the rudder angle and ship velocity components, which were then used as training data for a regression model. The accuracy and efficiency of the algorithm were validated by comparing SVR-based estimated hydrodynamic coefficients and the original hydrodynamic coefficients of the Mariner class vessel. The validated SVR algorithm was then applied to estimate the hydrodynamic coefficients for real ships using AIS data. The turning circle test wassimulated from calculated hydrodynamic coefficients and compared with the AIS data. The research results demonstrate the effectiveness of the SVR model in accurately estimating the hydrodynamic coefficients from the AIS data. In conclusion, this study proposes the viability of employing SVR model and AIS data for accurately estimating the hydrodynamic coefficients. It offers a practical approach to ship maneuvering prediction and control in the maritime industry.

Establishment of Navigational Risk Assessment Model Combining Dynamic Ship Domain and Collision Judgement Model (선박동적영역과 충돌위험평가식을 결합한 항해위험성평가모델 전개)

  • Kim, Won-Ouk;Kim, Chang-Je
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.1
    • /
    • pp.36-42
    • /
    • 2018
  • This paper considers the Marine Traffic Risk Assessment for fixed and moving targets, which threaten officers during a voyage. The Collision Risk Assessment Formula was calculated based on a dynamic ship domain considering the length, speed and maneuvering capability of a vessel. In particular, the Navigation Risk Assessment Model that is used to quantitatively index the effect of a ship's size, speed, etc. has been reviewed and improved using a hybrid combination of a vessel's dynamic area and the Collision Risk Assessment Formula. Accordingly, a new type of Marine Traffic Risk Assessment Model has been suggested giving consideration to the Speed Length Ratio, which was not sufficiently reflected in the existing Risk Assessment Model. The larger the Speed Length Ratio (dimensionless speed), the higher the CJ value. That is, the CJ value is presented well by the Speed Length Ratio. When the Speed Length Ratio is large, states ranging from [Caution], [Warning], [Dangerous] or [Very Dangerous] are presented from a greater distance than when the Speed Length Ratio is small. The results of this study, can be used for route and port development, including dangerous route avoidance, optimum route planning, breakwater width, bridge span, etc. as well as the development of costal navigation safety charts. This research is also applicable for the selection of optimum ship routing and the prevention of collisions for smart ships such as autonomous vessels.