In this paper, we propose an edge cloud platform architecture for implementing smart factory. The edge cloud platform is one of edge computing architecture which is mainly focusing on the efficient computing between IoT devices and central cloud. So far, edge computing has put emphasis on reducing latency, bandwidth and computing cost in areas like smart homes and self-driving cars. On the other hand, in this paper, we suggest not only common functional architecture of edge system but also light weight cloud based architecture to apply to the specialized requirements of smart factory. Cloud based edge architecture has many advantages in terms of scalability and reliability of resources and operation of various independent edge functions compare to typical edge system architecture. To make sure the availability of edge cloud platform in smart factory, we also analyze requirements of smart factory edge. We redefine requirements from a 4M1E(man, machine, material, method, element) perspective which are essentially needed to be digitalized and intelligent for physical operation of smart factory. Based on these requirements, we suggest layered(IoT Gateway, Edge Cloud, Central Cloud) application and data architecture. we also propose edge cloud platform architecture using lightweight container virtualization technology. Finally, we validate its implementation effects with case study. we apply proposed edge cloud architecture to the real manufacturing process and compare to existing equipment engineering system. As a result, we prove that the response performance of the proposed approach was improved by 84 to 92% better than existing method.
International Journal of Internet, Broadcasting and Communication
/
제13권3호
/
pp.148-154
/
2021
We propose the AI Smart Factory Model for integrated management of production processes in this paper .It is an integrated platform system for the production of food packaging containers, consisting of a platform system for the main producer, one or more production partner platform systems, and one or more raw material partner platform systems while each subsystem of the three systems consists of an integrated storage server platform that can be expanded infinitely with flexible systems that can extend client PCs and main servers according to size and integrated management of overall raw materials and production-related information. The hardware collects production site information in real time by using various equipment such as PLCs, on-site PCs, barcode printers, and wireless APs at the production site. MES and e-SCM data are stored in the cloud database server to ensure security and high availability of data, and accumulated as big data. It was built based on the project focused on dissemination and diffusion of the smart factory construction, advancement, and easy maintenance system promoted by the Ministry of SMEs and Startups to enhance the competitiveness of small and medium-sized enterprises (SMEs) manufacturing sites while we plan to propose this model in the paper to state funding projects for SMEs.
With increasing interest and research on smart cities, there is also an increasing number of studies on urban facilities that can be built within smart cities. According to these studies, smart cities' urban facilities are likely to become high value-added industries. However, the concept of smart city is not clear because it involves various fields. Therefore, in this study, the definition of Next-Generation(N.G) Smart City Facilities with Digital Twin and Digital Chain is carried out through a multidisciplinary approach. Based on this, Next-Generation Smart City Facilities will be divided into High Value-Added Products and Big Data Platforms. Subsequently, the definition of the Digital Chain containing the data flow of the entire process built through the construction of the Digital Twin proceeds. The definitions derived are applied to the Next-Generation Noise Barrier Tunnel to ensure that data is exchanged at the Digital Twin stage, and to review the proposed configuration of the Digital Chain and Data Flow in this study. The platform definition and Digital Chain of Next-Generation Smart City Facilities proposed in this study suggest that it can affect not only the aspects of data management that are currently in the spotlight, but also the manufacturing industry as a whole.
Vimal, S.;Jesuva, Arockiadoss S;Bharathiraja, S;Guru, S;Jackins, V.
Journal of Platform Technology
/
제9권1호
/
pp.15-22
/
2021
In a smart manufacturing environment, more and more devices are connected to the Internet so that a large volume of data can be obtained during all phases of the product life cycle. The large-scale industries, companies and organizations that have more operational units scattered among the various geographical locations face a huge resource consumption because of their unorganized structure of sharing resources among themselves that directly affects the supply chain of the corresponding concerns. Cloud-based smart manufacturing paradigm facilitates a new variety of applications and services to analyze a large volume of data and enable large-scale manufacturing collaboration. The manufacturing units include machinery that may be situated in different geological areas and process instances that are executed from different machinery data should be constantly managed by the super admin to coordinate the manufacturing process in the large-scale industries these environments make the manufacturing process a tedious work to maintain the efficiency of the production unit. The data from all these instances should be monitored to maintain the integrity of the manufacturing service system, all these data are computed in the cloud environment which leads to the latency in the performance of the smart manufacturing service system. Instead, validating data from the external device, we propose to validate the data at the front-end of each device. The validation process can be automated by script validation and then the processed data will be sent to the cloud processing and storing unit. Along with the end-device data validation we will implement the APM(Asset Performance Management) to enhance the productive functionality of the manufacturers. The manufacturing service system will be chunked into modules based on the functionalities of the machines and process instances corresponding to the time schedules of the respective machines. On breaking the whole system into chunks of modules and further divisions as required we can reduce the data loss or data mismatch due to the processing of data from the instances that may be down for maintenance or malfunction ties of the machinery. This will help the admin to trace the individual domains of the smart manufacturing service system that needs attention for error recovery among the various process instances from different machines that operate on the various conditions. This helps in reducing the latency, which in turn increases the efficiency of the whole system
Industrial complexes are areas where manufacturing companies are integrated, and logistics between tenant companies play a very important role, but idle resources can occur depending on the situation if each company operates independently. Accordingly, this study aimed to reduce overall logistics costs and increase corporate productivity by looking at ways to share and utilize logistics resources such as warehouses and transportation equipment to efficiently utilize logistics resources in industrial complexes and implementing a logistics sharing platform that can share these idle resources. To this end, this study conducted a research survey on the logistics status of manufacturing companies in Ulsan-Mipo Industrial Complex, based on this analysis, the necessity of logistics resource types and utilization of industrial complex resident companies, and based on this, a service model for logistics resource sharing was studied. In addition, it was intended to analyze the operational characteristics of the existing logistics system to derive improvements and to derive optimal measures to utilize information on shared idle resources. This study confirmed the importance of sharing and utilizing idle resources to optimize logistics resources in industrial complexes, and is expected to contribute to reducing logistics costs and increasing logistics efficiency of tenant companies.
Smart factory requires 4 Zero factors including Zero Waiting-time, Zero Inventory, Zero Defect, Zero Down-time) that needs IT convergence for production resources of 4M1E(Man, Machine, Material, Method, Energy) in real time and event processing in all type of manufacturing enterprises. This paper will be explaining about core emerging production IT convergence technologies including cyber device security, 4M1E integration, real time event driven architecture, common platform of manufacturing standard applications, smart factory to-be model for small and medium manufacturing enterprises.
Recently, the focus of research interest in artificial intelligence technology has shifted from algorithm development to application domains. Industrial sectors such as smart manufacturing, transportation, and logistics venture beyond automation to pursue digitalization of sites for intelligence. For example, smart manufacturing is realized by connecting manufacturing sites, autonomous reconfiguration, and optimization of manufacturing systems according to customer requirements to respond promptly to market needs. Currently, KSB Convergence Research Department is developing BeeAI-an on-site end-to-end intelligence platform. BeeAI offers end-to-end service pipeline configuration and DevOps technologies that can produce and provide intelligence services needed on-site. We are hopeful that in future, the BeeAI technology will become the base technology at various sites that require automation and intelligence.
Since the natural disasters such as floods, droughts, heat wave and cold wave are increasing, the need for risk management is necessary to minimize the damage with utilizing IT technology. Also, the monitoring services of disaster response type have been developed and applied. Recently, the open source hardware based on the signal of the sensor, or the monitoring studies have been carried. In this paper, by analyzing a low-cost open source hardware platform such as Beagle board, we examine the utilization of the hardware-based module for sensor monitoring.
This study aimed to grasp the perceptions and trends in fashion platforms and fashion smart factories using big data analysis. As a research method, big data analysis, fashion platform, and smart factory were identified through literature and prior studies, and text mining analysis and network analysis were performed after collecting text from the web environment between April 2019 and April 2021. After data purification with Textom, the words of fashion platform (1,0591 pieces) and fashion smart factory (9750 pieces) were used for analysis. Key words were derived, the frequency of appearance was calculated, and the results were visualized in word cloud and N-gram. The top 70 words by frequency of appearance were used to generate a matrix, structural equivalence analysis was performed, and the results were displayed using network visualization and dendrograms. The collected data revealed that smart factory had high social issues, but consumer interest and academic research were insufficient, and the amount and frequency of related words on the fashion platform were both high. As a result of structural equalization analysis, it was found that fashion platforms with strong connectivity between clusters are creating new competitiveness with service platforms that add sharing, manufacturing, and curation functions, and fashion smart factories can expect future value to grow together, according to digital technology innovation and platforms. This study can serve as a foundation for future research topics related to fashion platforms and smart factories.
최근 모바일, 클라우드, 그리고 사물인터넷의 융합으로 다양한 스마트팩토리 서비스가 제공되고, 많은 기업에서도 관심을 가지고 있다. 그러나 대부분의 시스템은 근로자 관점에서 구현되지 않았기 때문에 근로자로부터 외면 받고 있다. 이에 본 논문은 스마트공장 서비스를 수요자들이 정의하여 사용할 수 있도록 서비스 제작을 현장 근로자가 직접할 수 있는 개발도구를 구현하였다. 서비스에 사용되는 제조데이터는 제조설비와 연결된 센서로부터 실시간으로 수집하여 스마트팩토리 플랫폼 내에 저장된다. 그리고 플랫폼에 저장된 제조데이터로부터 설비 모니터링, 공정상태분석, 설비 제어 등 다양한 스마트 공장 서비스를 근로자가 직접 드래그앤드롭 방식으로 매우 쉽게 만들 수 있다. 구현된 시스템은 특히 소규모 제조 기업에서 기업의 특정 목적에 맞게 수시로 서비스를 변경해야하는 환경에서 더욱더 큰 효과를 낼 것으로 예상된다. 또한, 현장 근로자의 스마트팩토리 운용 및 활용 능력 향상은 물론 중소기업의 스마트팩토리 인재 양성에 많은 도움이 될 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.