• Title/Summary/Keyword: Smart manufacturing platform

Search Result 56, Processing Time 0.02 seconds

Development and Implementation of Smart Manufacturing Big-Data Platform Using Opensource for Failure Prognostics and Diagnosis Technology of Industrial Robot (제조로봇 고장예지진단을 위한 오픈소스기반 스마트 제조 빅데이터 플랫폼 구현)

  • Chun, Seung-Man;Suk, Soo-Young
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.4
    • /
    • pp.187-195
    • /
    • 2019
  • In the fourth industrial revolution era, various commercial smart platforms for smart system implementation are being developed and serviced. However, since most of the smart platforms have been developed for general purposes, they are difficult to apply / utilize because they cannot satisfy the requirements of real-time data management, data visualization and data storage of smart factory system. In this paper, we implemented an open source based smart manufacturing big data platform that can manage highly efficient / reliable data integration for the diagnosis diagnostic system of manufacturing robots.

Developing a Big Data Analytics Platform Architecture for Smart Factory (스마트공장을 위한 빅데이터 애널리틱스 플랫폼 아키텍쳐 개발)

  • Shin, Seung-Jun;Woo, Jungyub;Seo, Wonchul
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1516-1529
    • /
    • 2016
  • While global manufacturing is becoming more competitive due to variety of customer demand, increase in production cost and uncertainty in resource availability, the future ability of manufacturing industries depends upon the implementation of Smart Factory. With the convergence of new information and communication technology, Smart Factory enables manufacturers to respond quickly to customer demand and minimize resource usage while maximizing productivity performance. This paper presents the development of a big data analytics platform architecture for Smart Factory. As this platform represents a conceptual software structure needed to implement data-driven decision-making mechanism in shop floors, it enables the creation and use of diagnosis, prediction and optimization models through the use of data analytics and big data. The completion of implementing the platform will help manufacturers: 1) acquire an advanced technology towards manufacturing intelligence, 2) implement a cost-effective analytics environment through the use of standardized data interfaces and open-source solutions, 3) obtain a technical reference for time-efficiently implementing an analytics modeling environment, and 4) eventually improve productivity performance in manufacturing systems. This paper also presents a technical architecture for big data infrastructure, which we are implementing, and a case study to demonstrate energy-predictive analytics in a machine tool system.

Process and Quality Data Integrated Analysis Platform for Manufacturing SMEs (중소중견 제조기업을 위한 공정 및 품질데이터 통합형 분석 플랫폼)

  • Choe, Hye-Min;Ahn, Se-Hwan;Lee, Dong-Hyung;Cho, Yong-Ju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.3
    • /
    • pp.176-185
    • /
    • 2018
  • With the recent development of manufacturing technology and the diversification of consumer needs, not only the process and quality control of production have become more complicated but also the kinds of information that manufacturing facilities provide the user about process have been diversified. Therefore the importance of big data analysis also has been raised. However, most small and medium enterprises (SMEs) lack the systematic infrastructure of big data management and analysis. In particular, due to the nature of domestic manufacturing companies that rely on foreign manufacturers for most of their manufacturing facilities, the need for their own data analysis and manufacturing support applications is increasing and research has been conducted in Korea. This study proposes integrated analysis platform for process and quality analysis, considering manufacturing big data database (DB) and data characteristics. The platform is implemented in two versions, Web and C/S, to enhance accessibility which perform template based quality analysis and real-time monitoring. The user can upload data from their local PC or DB and run analysis by combining single analysis module in template in a way they want since the platform is not optimized for a particular manufacturing process. Also Java and R are used as the development language for ease of system supplementation. It is expected that the platform will be available at a low price and evolve the ability of quality analysis in SMEs.

A Study on the Platform for Big Data Analysis of Manufacturing Process (제조 공정 빅데이터 분석을 위한 플랫폼 연구)

  • Ku, Jin-Hee
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.5
    • /
    • pp.177-182
    • /
    • 2017
  • As major ICT technologies such as IoT, cloud computing, and Big Data are being applied to manufacturing, smart factories are beginning to be built. The key of smart factory implementation is the ability to acquire and analyze data of the factory. Therefore, the need for a big data analysis platform is increasing. The purpose of this study is to construct a platform for big data analysis of manufacturing process and propose integrated method for analysis. The proposed platform is a RHadoop-based structure that integrates analysis tool R and Hadoop to distribute a large amount of datasets. It can store and analyze big data collected in the unit process and factory in the automation system directly in HBase, and it has overcome the limitations of RDB - based analysis. Such a platform should be developed in consideration of the unit process suitability for smart factories, and it is expected to be a guide to building IoT platforms for SMEs that intend to introduce smart factories into the manufacturing process.

A Study on Big Data Analytics Services and Standardization for Smart Manufacturing Innovation

  • Kim, Cheolrim;Kim, Seungcheon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.91-100
    • /
    • 2022
  • Major developed countries are seriously considering smart factories to increase their manufacturing competitiveness. Smart factory is a customized factory that incorporates ICT in the entire process from product planning to design, distribution and sales. This can reduce production costs and respond flexibly to the consumer market. The smart factory converts physical signals into digital signals, connects machines, parts, factories, manufacturing processes, people, and supply chain partners in the factory to each other, and uses the collected data to enable the smart factory platform to operate intelligently. Enhancing personalized value is the key. Therefore, it can be said that the success or failure of a smart factory depends on whether big data is secured and utilized. Standardized communication and collaboration are required to smoothly acquire big data inside and outside the factory in the smart factory, and the use of big data can be maximized through big data analysis. This study examines big data analysis and standardization in smart factory. Manufacturing innovation by country, smart factory construction framework, smart factory implementation key elements, big data analysis and visualization, etc. will be reviewed first. Through this, we propose services such as big data infrastructure construction process, big data platform components, big data modeling, big data quality management components, big data standardization, and big data implementation consulting that can be suggested when building big data infrastructure in smart factories. It is expected that this proposal can be a guide for building big data infrastructure for companies that want to introduce a smart factory.

Development of Digital Twin platform using Smart Factory based CPPS (스마트팩토리 기반 CPPS를 활용한 Digital Twin 플랫폼 개발)

  • Lee, Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.305-307
    • /
    • 2021
  • In this paper, we propose a study related to the development of a Digital-Twin platform using a smart factory based CPPS (Cyber Pysical Production System) using ICT (Information Communication Technology) technology. The platform developed through this study performs a 3D model simulation function in conjunction with P3R (Product, Process, Plant, Resource) including BOP (Bill of Process) management function from the preceding manufacturing process planning stage. In addition, we propose a digital twin platform that can predict production processes, equipment, layout, and production. The platform proposed through this paper proposes a feature that can manage the entire smart factory manufacturing process from the initial planning design stage to the manufacturing, production, operation, and maintenance stages.

  • PDF

Development of Smart Factory-Based Technology Education Platform Linking CPPS and VR (CPPS 및 VR을 연계한 스마트팩토리 기반 기술 교육 플랫폼 개발)

  • Lee, Hyun
    • Journal of Practical Engineering Education
    • /
    • v.13 no.3
    • /
    • pp.483-490
    • /
    • 2021
  • In this paper, we proposed the development of a smart factory intergrated technology education platform using smart factory based CPPS (Cyber Physical Production System) and VR (Vitrual Reality) technology and educational methods using the platform. A platform has been developed to learn how to integrate 3D digital twin and BOP (Bill of Process)-based manufacturing processes. In addition, Digital Twin established a smart factory-based integrated education platform by linking mechanical systems, digital twins, and virtual reality through the OPC-UA server. Based on this platform, the smart factory integration platform is proposed to have individual elements of the smart factory integration platform through BOP-based digital twin simulation, OPC-UA integration, MES system, SCADA system, and VR interworking.

A Study on the Structural Relationship among Technological Determinants, Manufacturing Operations, and Performances for Implementing a Smart Factory in Small Businesses (중소 제조기업의 스마트공장 기술결정요인, 제조운영 및 성과 간 구조적 관계에 관한 연구)

  • Kwon, Se-In;Yang, Jong-Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.650-661
    • /
    • 2020
  • The digital transformation of the 4th industrial revolution is leading to changes and innovations in the global economy. Various countries are focusing on reviving their manufacturing industries and economic recovery through smart factories. The purpose of this study is to empirically identify technological determinants for the successful implementation of the smart factory and to verify teose effects on manufacturing operations and the firms' operational/environmental performances. Five factors, including sensor network, platform technology, information system, intelligent automation, and safety, were defined as core technologies. The SEM analysis results of 157 small and medium-sized manufacturing firms that have implemented smart factories are as follows. First, sensor network, platform technology, and information system had significant effects on smart manufacturing operations. Second, smart manufacturing operations have improved firm performance. This study is valuable in that it has confirmed the effectiveness of government-funded projects and systemized key technologies for implementing smart factories. Meanwhile, it is helpful for practitioners to support an efficient and effective decision-making for the new adoption.

Case Study on the Implementation of Facility AI Platform for Small and Medium Enterprises of Korean Root Industry (뿌리업종 중견중소기업의 설비 AI 플랫폼 구축에 관한 사례연구)

  • Lee, Byong Koo;Moon, Tae Soo
    • The Journal of Information Systems
    • /
    • v.32 no.3
    • /
    • pp.205-224
    • /
    • 2023
  • Purpose This study investigates the impact of organizational characteristics on organizational performance through case studies of smart factory implementation in the context of Korean small and medium Enterprises (SMEs). To achieve this goal, this study adopts the smart factory index of KOSMO (Korea Smart Manufacturing Office) established by Korean Ministry of SMEs and Startups. We visited 3 firms implemented smart factory projects. This study presents the results of field study in detail with evaluation criteria on how organizational competences like AI technology adoption and facility automation can be exploited to positively influence organizational performance through smart factory implementation. Design/methodology/approach There are not so many results of empirical studies related to smart factories in Korea. This is because organizational support and user involvement are required for facility AI platform service beyond factory automation after the start of the 4th Industrial Revolution. Korean government's KOSMO (Korean Smart Manufacturing Office) has developed and proposed a level measurement index for smart factory implementation. This study conducts case studies based on the level measurement method proposed by KOSMO in the process of conducting case studies of three companies belonging to the root and mechanic industries in Korea. Findings The findings indicate that organizational competences, such as facility AI platform adoption and user involvement, are antecedents to influence smart factory implementation, while smart factory implementation has significant relationship with organizational performance. This study provides a better understanding of the connection between organizational competences and organizational performance through smart factory case studies. This study suggests that SMEs should focus on enhancing their organizational competences for improving organizational performance through implementing smart factory projects.

Design and Implementation of Smart Factory System based on Manufacturing Data for Cosmetic Industry (화장품 제조업을 위한 제조데이터 기반의 스마트팩토리 시스템의 설계 및 구현)

  • Oh, Sewon;Jeong, Jongpil;Park, Jungsoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.1
    • /
    • pp.149-162
    • /
    • 2021
  • This paper established a new smart factory based on manufacturing data for an introductory company focusing on the personalized cosmetics manufacturing industry. We build on an example of a system that collects, manages, and analyzes documents and data that were previously managed by CGMP-based analog for data-driven use. To this end, we have established a system that can collect all data in real time at the production site by introducing artificial intelligence smart factory platform LINK5 MOS and POP system, collecting PLC data, and introducing monitoring system and pin board. It also aims to create a new business cluster space based on this project.