• Title/Summary/Keyword: Smart farms

Search Result 195, Processing Time 0.027 seconds

Method for predicting the diagnosis of mastitis in cows using multivariate data and Recurrent Neural Network (다변량 데이터와 순환 신경망을 이용한 젖소의 유방염 진단예측 방법)

  • Park, Gicheol;Lee, Seonghun;Park, Jaehwa
    • Journal of Software Assessment and Valuation
    • /
    • v.17 no.1
    • /
    • pp.75-82
    • /
    • 2021
  • Mastitis in cows is a major factor that hinders dairy productivity of farms, and many attempts have been made to solve it. However, research on mastitis has been limited to diagnosis rather than prediction, and even this is mostly using a single sensor. In this study, a predictive model was developed using multivariate data including biometric data and environmental data. The data used for the analysis were collected from robot milking machines and sensors installed in farmhouses in Chungcheongnam-do, South Korea. The recurrent neural network model using three weeks of data predicts whether or not mastitis is diagnosed the next day. As a result, mastitis was predicted with an accuracy of 82.9%. The superiority of the model was confirmed by comparing the performance of various data collection periods and various models.

Removal Efficiency of Settleable Solids in Seawater Aquaculture Farm Wastewater (하이드로싸이클론을 이용한 해수 양식장 침전 고형물의 제거 효율 평가)

  • Junhyuk Seo;Pyongkih Kim;Jeonghwan Park
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.1
    • /
    • pp.116-123
    • /
    • 2023
  • Flow-through aquaculture systems generate large amounts of wastewater containing compounds such as solids that can settle near aquafarms and cause eutrophication. The settled solids are often reintroduced into flow-through systems, and aquatic animals can be affected by the solids and pathogens associated with these solids. For a sustainable aquaculture operation, adequate wastewater treatment is required. Hydrocyclones are one of the most promising technologies for the removal of solids in aquaculture wastewater. In this study, a model for performance prediction of hydrocyclones was investigated under three different operating conditions: water temperature, solids concentration, and water inlet velocity. The synthetic solids solution was prepared using settled solids from abalone aquaculture farms. The daily solids removal rates of the tested hydrocyclones ranged from 0.18 to 26.0 g solids-m-3-day-1, and removal efficiency ranged from 5.1 to 34.4%. The inlet water velocity had the greatest effect on solids removal and hydrocyclone efficiencies. The following multiregression model equation was derived from the daily solids removal rate (g solids-m-3-day-1) results for water temperature (T, ℃), solids concentration (SS, mg-L-1), and tangential inlet water velocity (TIV, m-sec-1): daily solids removal rate: f(z)=4.465+0.809TIV-0.375T+0.217SS (r2=0.976).

Self-diagnosis Algorithm for Water Quality Sensors Based on Water Quality Monitoring Data (수질 모니터링 데이터 기반의 수질센서 자가진단 알고리즘)

  • HongJoong Kim;Jong-Min Kim;Tae-Hyung Kang;Gab-Sang Ryu
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.1
    • /
    • pp.41-47
    • /
    • 2023
  • Today, due to the increase in global population growth, the international community is discussing solving the food problem. The aquaculture industry is emerging as an alternative to solving the food problem. For the innovative growth of the aquaculture industry, smart fish farms that combine the fourth industrial technology are recently being distributed, and full-cycle digitalization is being promoted. Water quality sensors, which are important in the aquaculture industry, are electrochemical portable sensors that check water quality individually and intermittently, making it impossible to analyze and manage water quality in real time. Recently, optically-based monitoring sensors have been developed and applied, but the reliability of monitoring data cannot be guaranteed because the state information of the water quality sensor is unknown. Therefore, this paper proposes an algorithm representing self-diagnosis status such as Failure, Out of Specification, Maintenance Required, and Check Function based on monitoring data collected by water quality sensors to ensure data reliability.

Detection Model of Fruit Epidermal Defects Using YOLOv3: A Case of Peach (YOLOv3을 이용한 과일표피 불량검출 모델: 복숭아 사례)

  • Hee Jun Lee;Won Seok Lee;In Hyeok Choi;Choong Kwon Lee
    • Information Systems Review
    • /
    • v.22 no.1
    • /
    • pp.113-124
    • /
    • 2020
  • In the operation of farms, it is very important to evaluate the quality of harvested crops and to classify defective products. However, farmers have difficulty coping with the cost and time required for quality assessment due to insufficient capital and manpower. This study thus aims to detect defects by analyzing the epidermis of fruit using deep learning algorithm. We developed a model that can analyze the epidermis by applying YOLOv3 algorithm based on Region Convolutional Neural Network to video images of peach. A total of four classes were selected and trained. Through 97,600 epochs, a high performance detection model was obtained. The crop failure detection model proposed in this study can be used to automate the process of data collection, quality evaluation through analyzed data, and defect detection. In particular, we have developed an analytical model for peach, which is the most vulnerable to external wounds among crops, so it is expected to be applicable to other crops in farming.

Enhancing Transparency and Trust in Agrifood Supply Chains through Novel Blockchain-based Architecture

  • Sakthivel V;Prakash Periyaswamy;Jae-Woo Lee;Prabu P
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.7
    • /
    • pp.1968-1985
    • /
    • 2024
  • At present, the world is witnessing a rapid change in all the fields of human civilization business interests and goals of all the sectors are changing very fast. Global changes are taking place quickly in all fields - manufacturing, service, agriculture, and external sectors. There are plenty of hurdles in the emerging technologies in agriculture in the modern days. While adopting such technologies as transparency and trust issues among stakeholders, there arises a pressurized necessity on food suppliers because it has to create sustainable systems not only addressing demand-supply disparities but also ensuring food authenticity. Recent studies have attempted to explore the potential of technologies like blockchain and practices for smart and sustainable agriculture. Besides, this well-researched work investigates how a scientific cum technological blockchain architecture addresses supply chain challenges in Precision Agriculture to take up challenges related to transparency traceability, and security. A robust registration phase, efficient authentication mechanisms, and optimized data management strategies are the key components of the proposed architecture. Through secured key exchange mechanisms and encryption techniques, client's identities are verified with inevitable complexity. The confluence of IoT and blockchain technologies that set up modern farms amplify control within supply chain networks. The practical manifestation of the researchers' novel blockchain architecture that has been executed on the Hyperledger network, exposes a clear validation using corroboration of concept. Through exhaustive experimental analyses that encompass, transaction confirmation time and scalability metrics, the proposed architecture not only demonstrates efficiency but also underscores its usability to meet the demands of contemporary Precision Agriculture systems. However, the scholarly paper based upon a comprehensive overview resolves a solution as a fruitful and impactful contribution to blockchain applications in agriculture supply chains.

Agrometeorological Early Warning System: A Service Infrastructure for Climate-Smart Agriculture (농업기상 조기경보체계: 기후변화-기상이변 대응서비스의 출발점)

  • Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.403-417
    • /
    • 2014
  • Increased frequency of climate extremes is another face of climate change confronted by humans, resulting in catastrophic losses in agriculture. While climate extremes take place on many scales, impacts are experienced locally and mitigation tools are a function of local conditions. To address this, agrometeorological early warning systems must be place and location based, incorporating the climate, crop and land attributes at the appropriate scale. Existing services often lack site-specific information on adverse weather and countermeasures relevant to farming activities. Warnings on chronic long term effects of adverse weather or combined effects of two or more weather elements are seldom provided, either. This lecture discusses a field-specific early warning system implemented on a catchment scale agrometeorological service, by which volunteer farmers are provided with face-to-face disaster warnings along with relevant countermeasures. The products are based on core techniques such as scaling down of weather information to a field level and the crop specific risk assessment. Likelihood of a disaster is evaluated by the relative position of current risk on the standardized normal distribution from climatological normal year prepared for 840 catchments in South Korea. A validation study has begun with a 4-year plan for implementing an operational service in Seomjin River Basin, which accommodates over 60,000 farms and orchards. Diverse experiences obtained through this study will certainly be useful in planning and developing the nation-wide disaster early warning system for agricultural sector.

Development of Remote Monitoring and Control Systems in Bottle Cultivation Environments of Oyster Mushrooms (느타리 병버섯 재배사 원격환경 모니터링 및 제어시스템 개발)

  • Lee, Sung-Hyoun;Yu, Byeong-Kee;Lee, Chan-Jung;Yun, Nam-Kyu
    • Journal of Mushroom
    • /
    • v.15 no.3
    • /
    • pp.118-123
    • /
    • 2017
  • This study was carried out to develop the technology to manage the growth of mushrooms, which were cultivated based on long-term information obtained from quantified data. In this study, hardware that monitored and controlled the growth environment of the mushroom cultivation house was developed. An algorithm was also developed to grow mushrooms automatically. Environmental management for the growth of mushrooms was carried out using cultivation sites, computers, and smart phones. To manage the environment of the mushroom cultivation house, the environmental management data from farmers cultivating the highest quality mushrooms in Korea were collected and a growth management database was created. On the basis of the database value, the management environment for the test cultivar (hukthali) was controlled at $0.5^{\circ}C$ with 3-7% relative humidity and 10% carbon dioxide concentration. As a result, it was possible to produce mushrooms that were almost similar to those cultivated in farms with the best available technology.

Agro-Environmental Observation in a Rice Paddy under an Agrivoltaic System: Comparison with the Environment outside the System (영농형 태양광 시설 하부 논에서의 농업환경 관측 및 시설 외부 환경과의 비교)

  • Kang, Minseok;Sohn, Seungwon;Park, Juhan;Kim, Jongho;Choi, Sung-Won;Cho, Sungsik
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.3
    • /
    • pp.141-148
    • /
    • 2021
  • Agrivoltaic systems, also called solar sharing, stated from an idea that utilizes sunlight above the light saturation point of crops for power generation using solar panels. It is expected that agrivoltaic systems can realize climate smart agriculture by reducing evapotranspiration and methane emission due to the reduction of incident solar radiation and the consequent surface cooling effect and bring additional income to farms through solar power generation. In this study, to evaluate that agrivoltaic systems are suitable for realization of climate smart agriculture, we conducted agro-environmental observations (i.e., downward/upward shortwave/longwave radiations, air temperature, relative humidity, water temperature, soil temperature, and wind speed) in a rice paddy under an agrivoltaic system and compared with the environment outside the system using automated meteorological observing systems (AMOS). During the observation period, the spatially averaged incoming solar radiation under the agrivoltaic system was about 70% of that in the open paddy field, and clear differences in the soil and water temperatures between the paddy field under the agrivoltaic system and the open paddy field were confirmed, although the air temperatures were similar. It is required in the near future to confirm whether such environmental differences lead to a reduction in water consumption and greenhouse gas emissions by flux measurements.

Agrometeorological Early Warning System: A Service Infrastructure for Climate-Smart Agriculture (농업기상 조기경보시스템 설계)

  • Yun, Jin I.
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2014.10a
    • /
    • pp.25-48
    • /
    • 2014
  • Increased frequency of climate extremes is another face of climate change confronted by humans, resulting in catastrophic losses in agriculture. While climate extremes take place on many scales, impacts are experienced locally and mitigation tools are a function of local conditions. To address this, agrometeorological early warning systems must be place and location based, incorporating the climate, crop and land attributes at the appropriate scale. Existing services often lack site-specific information on adverse weather and countermeasures relevant to farming activities. Warnings on chronic long term effects of adverse weather or combined effects of two or more weather elements are seldom provided, either. This lecture discusses a field-specific early warning system implemented on a catchment scale agrometeorological service, by which volunteer farmers are provided with face-to-face disaster warnings along with relevant countermeasures. The products are based on core techniques such as scaling down of weather information to a field level and the crop specific risk assessment. Likelihood of a disaster is evaluated by the relative position of current risk on the standardized normal distribution from climatological normal year prepared for 840 catchments in South Korea. A validation study has begun with a 4-year plan for implementing an operational service in Seomjin River Basin, which accommodates over 60,000 farms and orchards. Diverse experiences obtained through this study will certainly be useful in planning and developing the nation-wide disaster early warning system for agricultural sector.

  • PDF

Regional irrigation control modeling and regional climate characteristics Research on the correlation (지역별 관수제어 모델링 및 지역별 기후 특성과의 연관성에 관한 연구)

  • Jeong, Jin-Hyoung;Jo, Jae-Hyun;Kim, Seung-Hun;Choi, Ahnryul;Lee, Sang-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.3
    • /
    • pp.184-192
    • /
    • 2021
  • Domestic agriculture is facing real problems, such as a decrease in the population in rural areas, a shortage of labor due to an aging population, and increased risks due to the deepening of climate change. Smart farming technology is being developed to solve these problems. In the development of smart agricultural technology, irrigation control plays an important role in creating an optimal growth environment and is an important issue in terms of environmental protection. This paper is about the study of collecting and analyzing the rhizosphere environmental data of domestic paprika farms for the purpose of improving the quality of crops, reducing production costs, and increasing production. Irrigation control modeling presented in this paper Control modeling is to graphically present changes in a medium weight, feed, and drainage due to regional climatic features. To derive the graph, the parameters were determined through data collection and analysis, and the suggested irrigation control modeling method was applied to the collected rhizosphere environmental data to control irrigation in 6 regions (Gangwon-do, Chungnam, Jeonbuk, Jeonnam, Gyeongbuk, and Gyeongnam). The parameters were obtained and graphs were derived from them. After that, a study was conducted to analyze the derived parameters to verify the validity of the irrigation control modeling method and to correlate them with climatic features (average temperature and precipitation).