• 제목/요약/키워드: Smart energy

검색결과 1,864건 처리시간 0.037초

The Influence of Regulatory Focus on Consumer Responses to Smart Home Services for Energy Management

  • Kim, Moon-Yong;Cho, Heayon
    • International journal of advanced smart convergence
    • /
    • 제9권3호
    • /
    • pp.221-226
    • /
    • 2020
  • Smart homes have become the state of the art in the reduction and monitoring of energy usage within a residential setting. Emerging threats such as climate change, global warming and volatility in energy prices have fuelled the interest in smart systems. Given that environmental sustainability has become a more significant factor for consumers, this research examines whether consumers' attitudes toward smart home services for efficient energy management differ according to their regulatory focus. Specifically, it is predicted that consumers will have more favorable attitudes toward smart home services for efficient energy management when they are promotion-focused (vs. prevention-focused). The results indicate that respondents with a promotion (vs. prevention) focus reported significantly more favorable attitudes toward smart home services for energy management (e.g., smart cooling/heating system, smart ventilation & air conditioning system, smart thermostats, smart plugs, and smart switches). We suggest that regulatory focus may be an effective marketing and segmentation tool in promoting smart home services for energy management and facilitating their receptiveness to the services.

A Case Study on Energy focused Smart City, London of the UK: Based on the Framework of 'Business Model Innovation'

  • Song, Minzheong
    • International journal of advanced smart convergence
    • /
    • 제9권2호
    • /
    • pp.8-19
    • /
    • 2020
  • We see an energy fucused smart city evolution of the UK along with the project of "Smart London Plan (SLP)." A theoretical logic of business model innovation has been discussed and a research framework of evolving energy focused smart city is formulated. The starting point is the silo system. In the second stage, the private investment in smart meters establishes a basement for next stages. As results, the UK's smart energy sector has evolved from smart meter installation through smart grid to new business models such as water-energy nexus and microgrid. Before smart meter installation of the government, the electricity system was centralized. However, after consumer engagement plan has been set to make them understand benefits that they can secure through smart meters, the customer behavior has been changed. The data analytics firm enables greater understanding of consumer behavior and it helps energy industry to be smart via controlling, securing and using that data to improve the energy system. In the third stage, distribution network operators (DNOs)' access to smart meter data has been allowed and the segmentation starts. In the fourth stage, with collaboration of Ofwat and Ofgem, it is possible to eliminate unnecessary duplication of works and reduce interest conflict between water and electricity. In the fifth stage, smart meter and grid has been integrated as an "adaptive" system and a transition from DNO to DSO is accomplished for the integrated operation. Microgrid is a prototype for an "adaptive" smart grid. Previous steps enable London to accomplish a platform leadership to support the increasing electrification of the heating and transport sector and smart home.

Modeling and Simulation of Smart Home Energy Consumption

  • Naziha Labiadh;Imen Amdouni;Lilia El Amraoui
    • International Journal of Computer Science & Network Security
    • /
    • 제24권6호
    • /
    • pp.77-82
    • /
    • 2024
  • The Smart home energy consumption represents much of the total energy consumed in advanced countries. For this reason, the main objectif of this paper is to study the energy consumption profile by day for each home appliances: controllable appliances for example Washing machine, Tumble dryer and Air conditioning and uncontrollable appliances for example TV, PC, Lighting, Refrigerator and Electric heater. In this paper, we start with presentation of a smart home energy management systems. Next, we present the modeling and simulation of controllable appliances and uncontrollable appliances. Finally, concludes this paper with some prospects. The modeling and the simulation of a Smart home appliances is based on MATLAB/Simulink software.

Internet of Things based Smart Energy Management for Smart Home

  • TASTAN, Mehmet
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권6호
    • /
    • pp.2781-2798
    • /
    • 2019
  • Thanks to internet, as one of indispensable parts of our lives, many devices that we use in our daily lives like TV, air conditioner, refrigerator, washing machine, can be monitored and controlled remotely by becoming more intelligent via Internet of Things (IoT) technology. Smart Home applications as one of the elements of smart cities, are individually the most demanded application without question. In this study, Smart Energy Management (SEM) system, based on NodeMCU and Android, has been designed for SEM, which is a part of the smart home application. With this system, household energy consumption can be monitored in real time, as well as having the ability to record the data comprising of operation times and energy consumption information for each device. Additionally, it is ensured to meet the energy needs on a maximized level possible, during the hours when the energy costs are lower owing to the SEM system. The Android interface provides the users with the opportunity to monitor and change their electricity consumption habits in order to optimize the energy efficiency, along with the opportunity to draw up of a daily and weekly schedule.

스마트에너지하우스 구현을 위한 에너지 수요관리 알고리즘의 개발 (Development of an Energy Management Algorithm for Smart Energy House)

  • 전정표;김광호
    • 전기학회논문지
    • /
    • 제59권3호
    • /
    • pp.515-524
    • /
    • 2010
  • Recently, many actions are taking to accelerate progress toward social consensus and implementation of Smart Grid. Smart Grid refers to a evolution of the electricity supply infrastructure that monitors, protects, and intelligently optimize the operation of the interconnected elements including various type of generators, power grid, building/home automation system and end-use consumers. The most distinguished element will be Advanced Metering Infrastructure (AMI) that will be installed to every end-use consumer's home or building and optimize the energy consumption of the end-use consumer. The key function of AMI is energy management capability that coordinates and optimally controls the various loads according to the operating condition and environments. In this study, we figure out the basic function of AMI in Smart Energy House that can be defined as a model house implementing in Smart Grid. This paper proposes the energy management algorithm that will be implemented in AMI at Smart Energy House. The paper also show how energy saving in Smart Energy House can be achieved applying the proposed algorithm to an actual house model that has mainly lighting, air-conditioning, TV loads.

스마트TV를 이용한 공동주택의 에너지 사용 모니터링 시스템 (A Monitoring System of Energy Usage for Apartment Houses Using Smart TV)

  • 박성수;진영훈;남상훈;채영호
    • 한국CDE학회논문집
    • /
    • 제18권6호
    • /
    • pp.451-460
    • /
    • 2013
  • This paper presents the necessary elements and data flow in developing a monitoring system of energy usage for apartment houses with a Smart TV. Energy consumption data in each home are collected and analyzed in the HUB station by way of measuring instruments. And the amount of energy usage, such as electricity, gas, hot water, heating, water and other utilities are displayed through the Smart TV application. Energy consumption Database in the HUB station are processed and displayed in the browser of a Smart TV through XML, JAVASCRIPT and Flash. Smart TV users can get the energy consumption status through the energy consumption analysis display of the Smart TV application and improve the energy efficiency by comparing the usage patterns with neighboring houses. And the application display energy usage information, consumption ranking, rates to user as well. Furthermore, usage of last month or year can be compared to help to reduce the energy usage. The proposed system can provide the information about the amount of energy use to be reduced and the warning on the waste of energy.

Investigation of two-phase natural circulation with the SMART-ITL facility for an integral type reactor

  • Jeon, Byong Guk;Yun, Eunkoo;Bae, Hwang;Yang, Jin-Hwa;Ryu, Sung-Uk;Bang, Yun-Gon;Yi, Sung-Jae;Park, Hyun-Sik
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.826-833
    • /
    • 2022
  • A two-phase natural circulation test using SMART integral test loop (SMART-ITL) was conducted to explore thermo-hydraulic phenomena of two-phase natural circulation in the SMART reactor. Specifically, the test examined the natural circulation in the primary loop under a stepwise coolant inventory loss while keeping the core power constant at 5% of the scaled full power. Based on the test results, three flow regimes were observed: single-phase natural circulation (SPNC), two-phase natural circulation (TPNC), and boiler-condenser natural circulation (BCNC). The flow rate remained steady in the SPNC, slightly increased in the TPNC, and dropped abruptly and maintained in the BCNC. Using a natural circulation flow map, the natural circulation characteristic in the SMART-ITL was compared with those in pressurized water reactor simulators. In the SMART-ITL, a BCNC regime appeared instead of siphon condensation and reflux condensation regimes because of the use of once-through steam generators.

스마트 비디오 디바이스를 위한 에너지 하비스팅 및 프로파일링 시스템 (An Energy Harvesting and Profiling System for Smart Video Devices)

  • 강두식;김준식;박건우;이명진
    • 한국항행학회논문지
    • /
    • 제21권1호
    • /
    • pp.99-106
    • /
    • 2017
  • 본 논문에서는 배터리 외에 별도의 전력원이 없거나 전력이 부족한 사물인터넷 환경에서 스마트 비디오 디바이스에 에너지 공급을 위한 에너지 하비스팅 및 프로파일링 시스템을 설계한다. 에너지 하비스팅 모듈은 태양전지판에서 하비스팅 된 태양광 에너지를 스마트 비디오 디바이스에 전달하고, 에너지 프로파일링 모듈은 디바이스 내부 배터리 유출 전류와 전압, 프로세스 소비 에너지를 측정하고 이를 이용하여 에너지 하비스팅 모듈로부터 디바이스 내부로 유입된 에너지와 디바이스 내부 소비 에너지를 계산한다. 실제 환경에서 측정한 하비스팅 된 에너지를 기상청이 제공하는 지역 일사량으로부터 계산한 에너지와의 비교를 통해 설계한 에너지 하비스팅 및 프로파일링 시스템의 적합성을 검증한다. 설계한 에너지 하비스팅 및 프로파일링 시스템은 지속 가능한 스마트 비디오 디바이스나 사물인터넷용 센서 설계에 활용될 수 있다.

Electrochromic 창호 적용시 지역별 건물 냉난방 에너지 소비량 절감성능 (Performance Evaluation of Electrochromic Window System by Different Orientations and Locations in Korea)

  • 신재윤;채영태
    • 한국태양에너지학회 논문집
    • /
    • 제38권5호
    • /
    • pp.75-84
    • /
    • 2018
  • The most crucial point of reducing building energy is application of high performance envelope. The amount of heat exchange through window is highest in comparison of other envelopes so that heat exchange through window influence directly with building energy consumption. The window energy performance can be define with thermal, leakage and optical performance. In previous study we can confirmed that not only thermal performance but also optical performance are considered, 11% to 15% of building energy consumption can be reduced. Smart window system has potential of energy saving so that many industry field use smart window system including architectural area and these aspect causes smart window market continuous growth year by year. In this study, building energy consumption has been analyzed which consist of smart window that dynamically control optical states. The consideration of standard commercial building model for research, the reference medium size commercial building model of DOE (Department Of Energy, USA) has been used. The building energy simulation result of 4 axis in 8 regions in Korea shows 8% to 22% reduction of building energy consumption by application of smart window system.

스마트 에너지 시스템 최적설계 및 적용사례 (Optimal Planning of Smart Energy System and its Applications)

  • 김기영;서석호;성진일;서현욱;오시덕;곽호영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3359-3364
    • /
    • 2007
  • The smart energy system is the integrated power system in which the power components including central station generation, distributed generation, renewable power generation, energy storage, and communications and controls are complexly connected with each other. In smart energy system, it is very important how to configure the diverse power generations and how to determine the operation mode of the chosen components with economic feasibility. In this study, we introduce the optimal planning method based on both economic feasibility and load profiles and its applications for the smart energy system in apartment. This method was considered very useful to determine the configuration and to decide the optimal operation mode of the smart energy system.

  • PDF