• Title/Summary/Keyword: Smart controller

Search Result 514, Processing Time 0.029 seconds

Smart Phone Robot Made of Smart Soft Composite (SSC)

  • Wang, Wei;Rodrigue, Hugo;Lee, Jang-Yeob;Han, Min-Woo;Ahn, Sung-Hoon
    • Composites Research
    • /
    • v.28 no.2
    • /
    • pp.52-57
    • /
    • 2015
  • Soft morphing robotics making use of smart material and based on biomimetic principles are capable of continuous locomotion in harmony with its environment. Since these robots do not use traditional mechanical components, they can be built to be light weight and capable of a diverse range of locomotion. This paper illustrates a flexible smart phone robot made of smart soft composite (SSC) with inchworm-like locomotion capable of two-way linear motion. Since rigid components are embedded within the robot, bending actuators with embedded rigid segments were investigated in order to obtain the maximum bending curvature. To verify the results, a simple mechanical model of this actuator was built and compared with experimental data. After that, the flexible robot was implemented as part of a smart phone robot where the rigid components of the phone were embedded within the matrix. Then, experiments were conducted to test the smart phone robot actuation force under different deflections to verify its load carrying capability. After that, the communication between the smart phone and robot controller was implemented and a corresponding phone application was developed. The locomotion of the smart phone robot actuated through an independent controller was also tested.

Development of Smart Kiosk for Controlling and Monitoring (제어 및 모니터링을 위한 스마트 키오스크 개발)

  • Kim, Jin-Sa
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.2
    • /
    • pp.160-164
    • /
    • 2022
  • In this paper, through the development of a smart panel (LCD kiosk) controller, contents to develop a system that can be operate in a desired environment by operating the window control and ventilation facilities according to the automatic controller operation based on the set values such as temperature, humidity, sunlight, and rainfall. In particular, the MQTT protocol-based sensor module can be directly manufactured and applied at any time based on various communication and power sources such as wireless, wired, and PLC (power line communication) to obtain the desired data, as well as fire, power failure, and intrusion in the house. It is also a system that enables operation and monitoring from a remote location based on the cloud environment by connecting sensors. Kiosks are currently being used in many places, and the demand for them is on the rise, and an active influx of young people can be expected through environmental improvement. It is expected to increase interest and understanding for improvement.

Development of the Adaptive PPF Controller for the Vibration Syppression of Smart Structures (지능구조물 제어를 위한 적응형 PPF 제어기의 개발)

  • Lee, Seung-Bum;Heo, Seok;Kwak, Moom Ku
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.302-307
    • /
    • 2001
  • This research is concerned with the development of a real-time adaptive PPF controller for the active vibration suppression of smart structure. In general, the tuning of the PPF controller is carried out off-line. In this research, the real-time learning algorithm is developed to find the optimal filter frequency of the PPF controller in real time and the efficacy of the algorithm is proved by implementing it in real time. To this end, the adaptive algorithm is developed by applying the gradient descent method to the predefined performance index, which is similar to the method used popularly in the optimization and neural network controller design. The experiment was carried out to verify the validity of the adaptive PPF controller developed in this research. The experimental results showed that adaptive PPF controller is effective for active vibration control of the structure which is excited by either impact or harmonic disturbance. The filter frequency of the PPF controller can be tuned in a very short period of time thus proving the efficiency of the adaptive PPF controller.

  • PDF

Devlopment of Smart Pyrotechnic Igniter (스마트 파이로테크닉스 점화장치 개발)

  • Lee, Yeung-Jo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.252-255
    • /
    • 2007
  • Recently military industrial company, utilizing company funded R&D and goverment and industry contracts, has developed ACTS/DACS technology. This technology can be utilized to rapidly steer "smart" bullets, "smart" rounds, tactical missile, cruise missile and kill vehicles for both endo- and exoatmospheric applications. The ACTS/DACS typically consists of a Smart Bus Controller(SCB), a proprietary network firing bus, Smart Pyrotechnic Devices(SPD), rocket motors, and a structure. The SCB communicates with the SPDs over the propretary network firing bus. Each rocket motor contains an SPD which provides rocket motor ignition. Firing energy is stored locally in the SPD so surge currents do not occur in the system as rocket motors are fired. This approach allows multiple, truly simultaneous firings without the need for large, dedicated batteries. Each SPD also functions as a network tranceiver and high reliability fir set all in the space of a single-sided 10 millimeter diameter circuit. The present work develops a new means for igniting explosive materials. The volume of semiconductor bridge (SCB) is over 30 times smaller than a conventional hot wire. We believe that the present work has a potential for development of a new igniter such as smart pyrotechnic device.

  • PDF

Experimental evaluation of discrete sliding mode controller for piezo actuated structure with multisensor data fusion

  • Arunshankar, J.;Umapathy, M.;Bandhopadhyay, B.
    • Smart Structures and Systems
    • /
    • v.11 no.6
    • /
    • pp.569-587
    • /
    • 2013
  • This paper evaluates the closed loop performance of the reaching law based discrete sliding mode controller with multisensor data fusion (MSDF) in real time, by controlling the first two vibrating modes of a piezo actuated structure. The vibration is measured using two homogeneous piezo sensors. The states estimated from sensors output are fused. Four fusion algorithms are considered, whose output is used to control the structural vibration. The controller is designed using a model identified through linear Recursive Least Square (RLS) method, based on ARX model. Improved vibration suppression is achieved with fused data as compared to single sensor. The experimental evaluation of the closed loop performance of sliding mode controller with data fusion applied to piezo actuated structure is the contribution in this work.

Design and implementation of fast output sampling feedback control for shape memory alloy actuated structures

  • Dhanalakshmi, K.;Umapathy, M.;Ezhilarasi, D.;Bandyopadhyay, B.
    • Smart Structures and Systems
    • /
    • v.8 no.4
    • /
    • pp.367-384
    • /
    • 2011
  • This paper presents the design and experimental evaluation of fast output sampling feedback controller to minimize structural vibration of a cantilever beam using Shape Memory Alloy (SMA) wires as control actuators and piezoceramics as sensor and disturbance actuator. Linear dynamic models of the smart cantilever beam are obtained using online recursive least square parameter estimation. A digital control system that consists of $Simulink^{TM}$ modeling software and dSPACE DS1104 controller board is used for identification and control. The effectiveness of the controller is shown through simulation and experimentation by exciting the structure at resonance.

Comparison of the Multiple PPF Control and the Modified LQG Control for the Active Vibration Suppression of Intelligent Structures (지능구조물의 능동진동제어를 위한 다중 PPF 제어기와 수정 LQG 제어기의 비교 연구)

  • 곽문규
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1121-1129
    • /
    • 1998
  • This research is concerned with the multiple PPF and the modified LQG controller design for active vibration control of intelligent structures. The intelligent structure is defined as the structure equipped with smart actuators and sensors. Various control techniques aimed for the piezoceramic sensors and actuators have been proposed for the active vibration control of smart structures and some of them prove their effectiveness experimentally. In this paper, the multiple PPF controller and the modified LQG controller are developed and applied to the smart grid structure. The multiple PPF control and the modified LQG control can be classified as the classical and the modern control techniques. respectively. The experimental results show that both control techniques are effective in suppressing vibrations. Two control techniques are compared with respect to the design process. the ease of implementation and the effectiveness

  • PDF

Attitude SCAS Design for 40% Scaled Smart UAV (40% 축소형 스마트 무인기 비행제어기 설계)

  • Lee, Jang-Ho;Hwang, Tai-Won;Choi, Ji-Young;Kim, Eung-Tai
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.1-7
    • /
    • 2007
  • The control design for attitude and yaw rate of 40 % scaled SMART UA Vhas been performed. Analytic selection method for a control gain is proposed to meet the design specification of desired time response considering stability margin. The sliding mode attitude controller is also proposed and compared with the simulation results of a linear controller. Additionally, a velocity and height tracking controller is devised to prepar for the flight test.

  • PDF

Active Vibration Control of Smart Hull Structure Using MFC Actuators (MFC 작동기를 이용한 스마트 Hull 구조물의 능동 진동 제어)

  • Sohn, Jung-Woo;Kim, Heung-Soo;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.12 s.105
    • /
    • pp.1408-1415
    • /
    • 2005
  • Active vibration control of smart hull structure using Macro Fiber Composite (MFC) actuator is performed. Finite element modeling is used to obtain governing equations of motion and boundary effects of end-capped smart hull structure. Equivalent interdigitated electrode model is developed to obtain piezoelectric couplings of MFC actuator. Modal analysis is conducted to investigate the dynamic characteristics of the hull structure, and compared to the results of experimental investigation. MFC actuators are attached where the maximum control performance can be obtained. Active controller based on Linear Quadratic Gaussian (LQG) theory is designed to suppress vibration of smart hull structure. It is observed that closed loop damping can be improved with suitable weighting factors in the developed LQG controller and structural vibration is controlled effectively.

Active Vibration Control of Smart Hull Structure Using MFC Actuators (MFC 작동기를 이용한 스마트 Hull 구조물의 능동 진동 제어)

  • Sohn, Jung-Woo;Kim, Heung-Soo;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.217-222
    • /
    • 2005
  • Active vibration control of smart hull structure using Macro Fiber Composite (MFC) actuator is performed. Finite element modeling is used to obtain governing equations of motion and boundary effects of end-capped smart hull structure. Equivalent interdigitated electrode model is developed to obtain piezoelectric couplings of MFC actuator. Modal analysis is conducted to investigate the dynamic characteristics of the hull structure, and compared to the results of experimental investigation. MFC actuators are attached where the maximum control performance can be obtained. Active controller based on Linear Quadratic Gaussian (LQG) theory is designed to suppress vibration of smart hull structure. It is observed that closed loop damping can be improved with suitable weighting factors in the developed LQG controller and structural vibration is controlled effectively.

  • PDF