• Title/Summary/Keyword: Smart Working

Search Result 392, Processing Time 0.017 seconds

Mobile Contents Transformation System Research for Personalization Service (개인화 서비스를 위한 모바일 콘텐츠 변환 시스템 연구)

  • Bae, Jong-Hwan;Cho, Young-Hee;Lee, Jung-Jae;Kim, Nam-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.2
    • /
    • pp.119-128
    • /
    • 2011
  • The Sensor technology and portable device capability able to collect recent user information and the information about the surrounding environment haven been highly developed. A user can be made use of various contents and the option is also extending with this technology development. In particular, the initial portable device had simply a call function, but now that has evolved into 'the 4th screen' which including movie, television, PC ability. also, in the past, a portable device to provided only the services of a SMS, in recent years, it provided to interactive video service, and it include technology which providing various contents. Also, it is rising as media which leading the consumption of contents, because it can be used anytime, anywhere. However, the contents available for the nature of user's handheld devices are limited. because it is very difficult for making the contents separately according to various device specification. To find a solution to this problem, the study on one contents from several device has been progressing. The contents conversion technology making use of the profile of device out of this study comes to the force and profile study has been progressing for this. Furthermore, Demand for a user is also increased and the study on the technology collecting, analyzing demands has been making active progress. And what is more, Grasping user's demands by making use of this technology and the study on the technology analyzing, providing contents has been making active progress as well. First of all, there is a method making good use of ZigBee, Bluetooth technology about the sensor for gathering user's information. ZigBee uses low-power digital radio for wireless headphone, wireless communication network, and being utilized for smart energy, automatic home system, wireless communication application and wireless sensor application. Bluetooth, as industry standards of PAN(Personal Area Networks), is being made of use of low power wireless device for the technology supporting data transmission such as drawing file, video file among Bluetooth device. With analyzing the collected information making use of this technology, it utilizes personalized service based on network knowledge developed by ETRI to service contents tailor-made for a user. Now that personalized service builds up network knowledge about user's various environments, the technology provides context friendly service constructed dynamically on the basis of this. The contents to service dynamically like this offer the contents that it converses with utilizing device profile to working well. Therefore, this paper suggests the system as follow. It collects the information, for example of user's sensitivity, context and location by using sensor technology, and generates the profile as a means of collected information as sensor. It collects the user's propensity to the information by user's input and event and generates profile in the same way besides the gathered information by sensor. Device transmits a generated profile and the profile about a device specification to proxy server. And proxy server transmits a profile to each profile management server. It analyzes profile in proxy server so that it selects the contents user demand and requests in contents server. Contents server receives a profile of user portable device from device profile server and converses the contents by using this. Original source code of contents convert into XML code using the device profile and XML code convert into source code available in user portable device. Thus, contents conversion process is terminated and user friendly system is completed as the user transmits optimal contents for user portable device.

Wearable Computers

  • Cho, Gil-Soo;Barfield, Woodrow;Baird, Kevin
    • Fiber Technology and Industry
    • /
    • v.2 no.4
    • /
    • pp.490-508
    • /
    • 1998
  • One of the latest fields of research in the area of output devices is tactual display devices [13,31]. These tactual or haptic devices allow the user to receive haptic feedback output from a variety of sources. This allows the user to actually feel virtual objects and manipulate them by touch. This is an emerging technology and will be instrumental in enhancing the realism of wearable augmented environments for certain applications. Tactual displays have previously been used for scientific visualization in virtual environments by chemists and engineers to improve perception and understanding of force fields and of world models populated with the impenetrable. In addition to tactual displays, the use of wearable audio displays that allow sound to be spatialized are being developed. With wearable computers, designers will soon be able to pair spatialized sound to virtual representations of objects when appropriate to make the wearable computer experience even more realistic to the user. Furthermore, as the number and complexity of wearable computing applications continues to grow, there will be increasing needs for systems that are faster, lighter, and have higher resolution displays. Better networking technology will also need to be developed to allow all users of wearable computers to have high bandwidth connections for real time information gathering and collaboration. In addition to the technology advances that make users need to wear computers in everyday life, there is also the desire to have users want to wear their computers. In order to do this, wearable computing needs to be unobtrusive and socially acceptable. By making wearables smaller and lighter, or actually embedding them in clothing, users can conceal them easily and wear them comfortably. The military is currently working on the development of the Personal Information Carrier (PIC) or digital dog tag. The PIC is a small electronic storage device containing medical information about the wearer. While old military dog tags contained only 5 lines of information, the digital tags may contain volumes of multi-media information including medical history, X-rays, and cardiograms. Using hand held devices in the field, medics would be able to call this information up in real time for better treatment. A fully functional transmittable device is still years off, but this technology once developed in the military, could be adapted tp civilian users and provide ant information, medical or otherwise, in a portable, not obstructive, and fashionable way. Another future device that could increase safety and well being of its users is the nose on-a-chip developed by the Oak Ridge National Lab in Tennessee. This tiny digital silicon chip about the size of a dime, is capable of 'smelling' natural gas leaks in stoves, heaters, and other appliances. It can also detect dangerous levels of carbon monoxide. This device can also be configured to notify the fire department when a leak is detected. This nose chip should be commercially available within 2 years, and is inexpensive, requires low power, and is very sensitive. Along with gas detection capabilities, this device may someday also be configured to detect smoke and other harmful gases. By embedding this chip into workers uniforms, name tags, etc., this could be a lifesaving computational accessory. In addition to the future safety technology soon to be available as accessories are devices that are for entertainment and security. The LCI computer group is developing a Smartpen, that electronically verifies a user's signature. With the increase in credit card use and the rise in forgeries, is the need for commercial industries to constantly verify signatures. This Smartpen writes like a normal pen but uses sensors to detect the motion of the pen as the user signs their name to authenticate the signature. This computational accessory should be available in 1999, and would bring increased peace of mind to consumers and vendors alike. In the entertainment domain, Panasonic is creating the first portable hand-held DVD player. This device weight less than 3 pounds and has a screen about 6' across. The color LCD has the same 16:9 aspect ratio of a cinema screen and supports a high resolution of 280,000 pixels and stereo sound. The player can play standard DVD movies and has a hour battery life for mobile use. To summarize, in this paper we presented concepts related to the design and use of wearable computers with extensions to smart spaces. For some time, researchers in telerobotics have used computer graphics to enhance remote scenes. Recent advances in augmented reality displays make it possible to enhance the user's local environment with 'information'. As shown in this paper, there are many application areas for this technology such as medicine, manufacturing, training, and recreation. Wearable computers allow a much closer association of information with the user. By embedding sensors in the wearable to allow it to see what the user sees, hear what the user hears, sense the user's physical state, and analyze what the user is typing, an intelligent agent may be able to analyze what the user is doing and try to predict the resources he will need next or in the near future. Using this information, the agent may download files, reserve communications bandwidth, post reminders, or automatically send updates to colleagues to help facilitate the user's daily interactions. This intelligent wearable computer would be able to act as a personal assistant, who is always around, knows the user's personal preferences and tastes, and tries to streamline interactions with the rest of the world.

  • PDF