• Title/Summary/Keyword: Smart Water Grid

Search Result 68, Processing Time 0.022 seconds

A Study on the Development of Smart Water Grid Key Performance Index for the Implementation of Smart City (스마트시티 구현을 위한 스마트워터그리드 성과평가지표 개발에 관한 연구)

  • Jung, Seung Kwon;Jun, Kye Won
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.1
    • /
    • pp.25-39
    • /
    • 2020
  • Despite the global promotion of Smart City, there is currently no standard for smart water grid development, and it is not possible to judge the success of Smart City. There is a clear need to establish the requirements and goals of the Smart Water Grid and accurately diagnose and improve the limitations and problems of the existing Smart Water Grid. For this purpose, it is very important to use the index suitable for Smart Water Grid goals. In this study, we developed Smart Water Grid Index which can be used to evaluate the target measurement and attainment of Smart Water Grid and can be utilized based on the implementation plan for Smart Water Grid in the future. Through the development of the Smart Water Grid Key Performance Index (SWG KPI), we will lay the groundwork for continuous capacity evaluation of the Smart Water Grid and improve the reliability of the Index. It is expected that it will be possible to prepare and evaluate a Challenge Evaluation Card for the planned Smart Water Grid by providing an evaluation table for grid competency evaluation.

A study on Smart Water Grid through IT Convergence (IT 융합을 통한 스마트 워터그리드 추진방안에 대한 연구)

  • Kim, Dong-Hwan;Park, Kyung-Hye;Min, Kyung-Jin
    • Journal of Digital Convergence
    • /
    • v.11 no.7
    • /
    • pp.27-40
    • /
    • 2013
  • Due to global population growth and urbanization, water problems are expected to increase in severity. In response to this expectation, Smart Water Management that refers to implement intelligent water information systems by IT convergence is considered a new paradigm. In this paper, we try to study the Smart Water policy, especially Smart Water Grid, and technology development trends in major countries. On the basis of results from the comparative analysis with Smart Grid in power sector, we evaluate political. legal, economic and technological feasibility related with the Smart Water Grid. In the conclusion, we suggest some strategic recommendations for the promotion of the Smart Water Grid.

A Study on the AHP based Evaluation Criteria for the Combinatorial Technology of Smart Water Grid (AHP를 활용한 SWG 조합기술 평가기준에 관한 연구)

  • Kim, Yun-Jung;Kwark, Dong-Geun;Kim, Won-Tae;Kim, Jeong-Joo;Shin, Heung-Sup;Kim, Yong-Sung;Kim, Sang-Seon;Kim, Chae-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.1
    • /
    • pp.103-110
    • /
    • 2014
  • In this study, the evaluation criteria of performance and applicability is developed to rank the combinatorial technologies for SWG (Smart Water Grid) system using AHP (Analytic Hierarchy Process) method. Security, safety, solution, suitability and sustainability which are goals of SWG technology, are used as upper level hierarchy elements. And three detailed elements for each upper level hierarchy are adopted as the lower level hierarchy. The weighted value which represents the importance of each element, could be determined through questionnaires accomplished by groups of specialists who are engaged in relevant waster industry and research area. To assess the accuracy of the evaluation criteria developed in this study, a simulation on four decision alternatives for smart water grid was carried out as an evaluation. Consequently which showed 90 % of accuracy.

Information and Communication Technologies for Smart Water Grid Applications

  • Ballhysa, Nobel;Choi, Gyewoon;Byeon, Seongjoon
    • International journal of advanced smart convergence
    • /
    • v.8 no.2
    • /
    • pp.218-226
    • /
    • 2019
  • The use of Information and Communication Technologies (ICT) is the key to operate a change from the traditional manual reading of water meters and sensors to an automated system where high frequency data is remotely collected and analyzed in real time, one of the main components of a Smart Water Grid. The recent boom of ICT offers a wide range of both wired and wireless technologies to achieve this objective. We review and present in this article the most widely recognized technologies and protocols along with their respective advantages, drawbacks and applicability range which can be Home Area Network (HAN), Building Area Network (BAN) or Local/Neighborhood Area Network (LAN/NAN). We also present our findings and we give recommendations on the application of ICT in Smart Water Grids and future work needed.

Design for seawater reverse osmosis plant using water blending in smart water grid (스마트 워터 그리드 내에서 워터 블렌딩을 고려한 역삼투 해수담수화 플랜트 설계)

  • Lee, Hongju;Park, Hanbai;Woo, Dal-Sik;Kim, Suhan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.1
    • /
    • pp.89-96
    • /
    • 2015
  • Smart water grid is a water network with communication to save water and energy using various water resources. In smart water grid, water product from the various sources can be blended to be supplied to end-users. The product water blending was reported by literatures while feed water blending has been rarely reported so far. In this work, a commercial reverse osmosis (RO) system design software provided by a membrane manufacturer was used to elucidate the effect of feed water blending on the performance of seawater reverse osmosis (SWRO) plant. Fresh water from exisiting water resource was assumed to be blended to seawater to decrease salt concentration of the RO feed water. The feed water blending can simplify the RO system from double to single pass and decrease seawater intake amount, the unit prices of the RO system components including high pressure pump, and operation risk. Due to the increase in RO plant capacity with the feed water blending, however, the RO membrane area and total power consumption increase at higher water blending rates. Therefore, a specific benefit-cost analysis should be carried out to apply the feed water blending to SWRO plants.

Leakage detection and management in water distribution systems

  • Sangroula, Uchit;Gnawali, Kapil;Koo, KangMin;Han, KukHeon;Yum, KyungTaek
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.160-160
    • /
    • 2019
  • Water is a limited source that needs to be properly managed and distributed to the ever-growing population of the world. Rapid urbanization and development have increased the overall water demand of the world drastically. However, there is loss of billions of liters of water every year due to leakages in water distribution systems. Such water loss means significant financial loss for the utilities as well. World bank estimates a loss of $14 billion annually from wasted water. To address these issues and for the development of efficient and reliable leakage management techniques, high efforts have been made by the researchers and engineers. Over the past decade, various techniques and technologies have been developed for leakage management and leak detection. These include ideas such as pressure management in water distribution networks, use of Advanced Metering Infrastructure, use of machine learning algorithms, etc. For leakage detection, techniques such as acoustic technique, and in recent yeats transient test-based techniques have become popular. Smart Water Grid uses two-way real time network monitoring by utilizing sensors and devices in the water distribution system. Hence, valuable real time data of the water distribution network can be collected. Best results and outcomes may be produced by proper utilization of the collected data in unison with advanced detection and management techniques. Long term reduction in Non Revenue Water can be achieved by detecting, localizing and repairing leakages as quickly and as efficiently as possible. However, there are still numerous challenges to be met and future research works to be conducted in this field.

  • PDF

A Study on Encryption Module for Remote Terminal Security of Smart Water-Grid Network (스마트 워터그리드 네트워크의 원격 단말기 보안을 위한 암호화 모듈에 관한 연구)

  • Park, Seung-Hwan;Park, Hyung-Mo;Kim, Chang-Bok
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.6
    • /
    • pp.712-719
    • /
    • 2013
  • This paper studies the security module for the reliable transmission of the meter reading and the control data between the remote terminals and the upper server-side in smart water grid. The proposed security module was implemented to make it attachable to the remote terminal without security function. In particular, unlike the smart grid of electric field, the low power is considered due to the use of battery power in the smart water grid, and the ARIA-GCM-128 symmetric key method is adopted taking into the account that the damp and constrictive environments by the installed meter location in the underground occur a communication obstacle on building of the large-scale network system. The encryption module of this paper was devised to ensure the safety between the reading data on the terminal and the control data from the upper server, and secure the stability of the remote meter reading system by taking protection against an arbitrary alteration or modification.

Context-aware Recommendation System for Water Resources Distribution in Smart Water Grids (스마트 워터 그리드(Smart Water Grid) 수자원 분배를 위한 컨텍스트 인지 추천시스템)

  • Yang, Qinghai;Kwak, Kyung Sup
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.2
    • /
    • pp.80-89
    • /
    • 2014
  • In this paper, we conceive a context-aware recommendations system for water distribution in future smart water grids, with taking the end users' profiles, water types, network conditions into account. A spectral clustering approach is developed to cluster end users into different communities, based on the end users' common interests in water resources. A back-propagation (BP) neural network is designed to obtain the rating list of the end users' preferences on water resources and the water resource with the highest prediction rating is recommended to the end users. Simulation results demonstrate that the proposed scheme achieves the improved accuracy of recommendation within 2.5% errors notably together with a better user experience in contrast to traditional recommendations approaches.

A Case Study on Energy focused Smart City, London of the UK: Based on the Framework of 'Business Model Innovation'

  • Song, Minzheong
    • International journal of advanced smart convergence
    • /
    • v.9 no.2
    • /
    • pp.8-19
    • /
    • 2020
  • We see an energy fucused smart city evolution of the UK along with the project of "Smart London Plan (SLP)." A theoretical logic of business model innovation has been discussed and a research framework of evolving energy focused smart city is formulated. The starting point is the silo system. In the second stage, the private investment in smart meters establishes a basement for next stages. As results, the UK's smart energy sector has evolved from smart meter installation through smart grid to new business models such as water-energy nexus and microgrid. Before smart meter installation of the government, the electricity system was centralized. However, after consumer engagement plan has been set to make them understand benefits that they can secure through smart meters, the customer behavior has been changed. The data analytics firm enables greater understanding of consumer behavior and it helps energy industry to be smart via controlling, securing and using that data to improve the energy system. In the third stage, distribution network operators (DNOs)' access to smart meter data has been allowed and the segmentation starts. In the fourth stage, with collaboration of Ofwat and Ofgem, it is possible to eliminate unnecessary duplication of works and reduce interest conflict between water and electricity. In the fifth stage, smart meter and grid has been integrated as an "adaptive" system and a transition from DNO to DSO is accomplished for the integrated operation. Microgrid is a prototype for an "adaptive" smart grid. Previous steps enable London to accomplish a platform leadership to support the increasing electrification of the heating and transport sector and smart home.