• Title/Summary/Keyword: Smart Structure System

Search Result 827, Processing Time 0.029 seconds

A Platform Conception of Road Information Telecommunication System for Call & Response Service (Call & Response 서비스를 위한 도로정보통신 플랫폼 구상)

  • Yim, Choon-Sik;Lee, Ki-Young;Song, Pil-Yong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.5
    • /
    • pp.1-12
    • /
    • 2008
  • In this paper, we described about core technologies required for the seamless service implementation and the communication system structure conceiving required for call & response services in order that the real-time traffic information service is consecutively provided to the vehicle moving at high speed. The SMART highway service is the information communication environment build-up concept which the real-time C&R service is comprised of the vehicle moving with 160km/h above. It was possible in case of being the low speed car in the DSRC system structure. However, there is a limit in the high speed environment as the DSRC system like a convention. In this paper, we proposed the structure of fitting for the SMART highway environment using the hand-over technique compositing the base station and several repeaters of DSRC system.

  • PDF

A Study on the Segmentation for Adaptation of Web Contents in Smart Learning Environment (스마트 학습 환경에서 웹 콘텐츠 적응을 위한 부분화에 관한 연구)

  • Seo, Jin Ho;Kim, Myong Hee;Park, Man-Gon
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.325-333
    • /
    • 2016
  • The development of smart technology has brought the conversion of closed traditional e-learning contents into open flexible smart learning contents consisting of learner-centered modules, without the constraints of time and space by use of smart devices from the uniformed and passive classroom between teachers and learners. It has been demanded an open, personalized and customized teaching and learning contents of smart education and training systems according to wide supply of various smart devices. In this paper, we discuss about the status of the smart teaching and learning systems and analyze the characteristics and structure of the web contents for smart education and training systems by use of smart devices. And we propose a method how to block web contents, to extract them, and adapt personalized segments of web contents by adaptive algorithm into smart learning devices. We extract blocks from the web contents based on the smart device information and the preference information of the learners from existing web contents without the hassle of learners environment. After specifying a block priority from the extracted web contents by the adaptive segment algorithm, it can be displayed directly to the screen to fit the individual learning progress of the learners.

Development of Smart Phone App. Contents for 3D Sign Language Education (3D 수화교육 스마트폰 앱콘텐츠 개발)

  • Jung, Young Kee
    • Smart Media Journal
    • /
    • v.1 no.3
    • /
    • pp.8-14
    • /
    • 2012
  • In this paper, we develope the smart phone App. contents of 3D sign language to widen the opportunity of the korean sign language education for the hearing-impaired and normal people. Especially, we propose the sign language conversion algorithm that automatically transform the structure of Korean phrases to the structure of the sign language. Also, we implement the 3D sign language animation DB using motion capture system and data glove for acquiring the natural motions. Finally, UNITY 3D engine is used for the realtime 3D rendering of sign language motion. We are distributing the proposed App. with 3D sign language DB of 1,300 words to the iPhone App. store and Android App. store.

  • PDF

Performance Analysis of SMART Frame Applied to Logistics Buildings (물류시설에 SMART Frame 적용시 효용성 분석)

  • Son, Seung-Hyun;Kim, Ki-Ho;Lee, Jun-Ah;Kim, Sun-kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.14-15
    • /
    • 2018
  • Logistics facilities are characterized by wide spans and high flooring, most of which are constructed with PC (Precast Concrete) methods to meet a wide range of commercial and industrial needs. However, the PC structure is a pin joint design, and the construction cost is increased due to the restrictions caused by the installation process, and the construction period is lengthened. In order to solve the above problem, SMART Frame, which is a structural system similar to the steel frame structure, was developed by embedding a steel frame at both ends of the PC. The purpose of this study is to analyze the erection time reduction effect of steel connected precast concrete components (SMART frames) for long span and heavy loaded logistics buildings compared to existing PC frames. For this study, a logistics building constructed with pin joint PC components is selected as a case. The result is compared with the existing PC frame to confirm the erection time reduction effect.

  • PDF

Developing a smart structure using integrated DDA/ISMP and semi-active variable stiffness device

  • Karami, Kaveh;Nagarajaiah, Satish;Amini, Fereidoun
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.955-982
    • /
    • 2016
  • Recent studies integrating vibration control and structural health monitoring (SHM) use control devices and control algorithms to enable system identification and damage detection. In this study real-time SHM is used to enhance structural vibration control and reduce damage. A newly proposed control algorithm, including integrated real-time SHM and semi-active control strategy, is presented to mitigate both damage and seismic response of the main structure under strong seismic ground motion. The semi-active independently variable stiffness (SAIVS) device is used as semi-active control device in this investigation. The proper stiffness of SAIVS device is obtained using a new developed semi-active control algorithm based on real-time damage tracking of structure by damage detection algorithm based on identified system Markov parameters (DDA/ISMP) method. A three bay five story steel braced frame structure, which is equipped with one SAIVS device at each story, is employed to illustrate the efficiency of the proposed algorithm. The obtained results show that the proposed control algorithm could significantly decrease damage in most parts of the structure. Also, the dynamic response of the structure is effectively reduced by using the proposed control algorithm during four strong earthquakes. In comparison to passive on and off cases, the results demonstrate that the performance of the proposed control algorithm in decreasing both damage and dynamic responses of structure is significantly enhanced than the passive cases. Furthermore, from the energy consumption point of view the maximum and the cumulative control force in the proposed control algorithm is less than the passive-on case, considerably.

Intelligent Modeling of User Behavior based on FCM Quantization for Smart home (FCM 이산화를 이용한 스마트 홈에서 행동 모델링)

  • Chung, Woo-Yong;Lee, Jae-Hun;Yon, Suk-Hyun;Cho, Young-Wan;Kim, Eun-Tai
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.542-546
    • /
    • 2007
  • In the vision of ubiquitous computing environment, smart objects would communicate each other and provide many kinds of information about user and their surroundings in the home. This information enables smart objects to recognize context and to provide active and convenient services to the customers. However in most cases, context-aware services are available only with expert systems. In this paper, we present generalized activity recognition application in the smart home based on a naive Bayesian network(BN) and fuzzy clustering. We quantize continuous sensor data with fuzzy c-means clustering to simplify and reduce BN's conditional probability table size. And we apply mutual information to learn the BN structure efficiently. We show that this system can recognize user activities about 80% accuracy in the web based virtual smart home.

Seismic retrofit system made of viscoelastic polymer composite material and thin steel plates

  • Nasab, Mohammad Seddiq Eskandari;Chun, Seungho;Kim, Jinkoo
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.153-164
    • /
    • 2022
  • In this study, a series of cyclic loading tests were performed on viscoelastic dampers (VED) composed of viscoelastic polymer composite material and thin steel plates to observe the variation of the mechanical properties under different loading conditions. A mathematical model was developed based on the Kelvin-Voigt and Bouc-Wen models to formulate the nonlinear force-displacement relationship of the viscoelastic damper. The accuracy of the proposed mathematical model was verified using the data obtained from the tests. The mathematical model was applied to analyze a reinforced concrete framed structure retrofitted with viscoelastic dampers. Nonlinear dynamic analysis results showed that the average maximum inter-story drift ratios of the retrofitted structure met the target limit state after installing the VED. In addition, both the maximum and residual displacements were significantly reduced after the installation of the VED.

A new hybrid vibration control methodology using a combination of magnetostrictive and hard damping alloys

  • Buravalla, Vidyashankar R.;Bhattacharya, Bishakh
    • Smart Structures and Systems
    • /
    • v.3 no.4
    • /
    • pp.405-422
    • /
    • 2007
  • A new hybrid damping technique for vibration reduction in flexible structures, wherein a combination of layers of hard passive damping alloys and active (smart) magnetostrictive material is used to reduce vibrations, is proposed. While most conventional vibration control treatments are based exclusively on either passive or active based systems, this technique aims to combine the advantages of these systems and simultaneously, to overcome the inherent disadvantages in the individual systems. Two types of combined damping systems are idealized and studied here, viz., the Noninteractive system and the Interactive system. Frequency domain studies are carried out to investigate their performance. Finite element simulations using previously developed smart beam elements are carried out on typical metallic and laminated composite cantilever beams treated with hybrid damping. The influence of various parameters like excitation levels, frequency (mode) and control gain on the damping performance is investigated. It is shown that the proposed system could be used effectively to dampen the structural vibration over a wide frequency range. The interaction between the active and passive damping layers is brought out by a comparative study of the combined systems. Illustrative comparisons with 'only passive' and 'only active' damping schemes are also made. The influence and the mode dependence of control gain in a hybrid system is clearly illustrated. This study also demonstrates the significance and the exploitation of strain dependency of passive damping on the overall damping of the hybrid system. Further, the influence of the depthwise location of damping layers in laminated structures is also investigated.

Development of Remote Control System based on CNC Cutting Machine for Gradual Construction of Smart Factory Environment (점진적 스마트 팩토리 환경 구축을 위한 CNC 절단 장비 기반 원격 제어 시스템 개발)

  • Jung, Jinhwa;An, Donghyeok
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.12
    • /
    • pp.297-304
    • /
    • 2019
  • The technological advances such as communication, sensor, and artificial intelligence lead smart factory construction. Smart factory aims at efficient process control by utilizing data from the existing automation process and intelligence technology such as machine learning. As a result of constructing smart factory, productivity increases, but costs increase. Therefore, small companies try to make a step-by-step transition from existing process to smart factory. In this paper, we have proposed a remote control system that support data collection, monitoring, and control for manufacturing equipment to support the construction of CNC cutting machine based small-scale smart factory. We have proposed the structure and design of the proposed system and efficient sensing data transmission scheme. To check the feasibility, the system was implemented for CNC cutting machine and functionality verification was performed. For performance evaluation, the web page access time was measured. The results means that the implemented system is available level.

A Study on the Application of Smart Safety Helmets and Environmental Sensors in Ships (선박 내 스마트 안전모 및 환경 센서 적용에 관한 연구)

  • Do-Hyeong Kim;Yeon-Chul Ha
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.2
    • /
    • pp.82-89
    • /
    • 2023
  • Due to the characteristics of ship structure, the compartment structure is complicated and narrow, so safety accidents frequently occur during the work process. The main causes of accidents include structural collisions, falling objects, toxic substance leaks, fires, explosions, asphyxiation, and more. Understanding the on-site conditions of workers during accidents is crucial for mitigating damages. In order to ensure safety, the on-site situation is monitored using CCTV in the ship, but it is difficult to prevent accidents with the existing method. To address this issue, a smart safety helmet equipped with location identification and voice/video communication capabilities is being developed as a safety technology. Additionally, the smart safety helmet incorporates environmental sensors for temperature, humidity, vibration, noise, tilt (gyro sensor), and gas detection within the work area. These sensors can notify workers wearing the smart safety helmet of hazardous situations. By utilizing the smart safety helmet and environmental sensors, the safety of workers aboard ships can be enhanced.