• Title/Summary/Keyword: Smart Sensor Management

Search Result 347, Processing Time 0.022 seconds

The Influence of Product Attribute of Smart Clothing on Initial Trust and Purchase Intention: Focused on Sensor-Based Smart Clothing (스마트의류 제품속성이 초기신뢰와 구매의도에 미치는 영향: 센서기반 스마트의류를 중심으로)

  • Park, Hyun-Hee;Noh, Mi-Jin
    • Journal of the Korean Home Economics Association
    • /
    • v.49 no.6
    • /
    • pp.13-22
    • /
    • 2011
  • This study investigated the influence of product attribute on initial trust and purchase intention of sensor-based smart clothing. Questionnaires were administered to 256 university students in Daegu, Korea. The results were as follows: First, there were 5 factor solutions in product attribute of smart clothing; comfortableness, health usefulness, management easiness, safety, and aesthetic appearance. Second, there were significant effects on initial trust in heath usefulness, management easiness and safety. Third, there were significant effects on purchase intention in health usefulness, management easiness and aesthetic appearance. Fourth, there was a significant effect on purchase intention in initial trust.

Design and Implementation of M2M-based Smart Factory Management Systems that controls with Smart Phone (스마트폰과 연동되는 M2M 기반 스마트 팩토리 관리시스템의 설계 및 구현)

  • Park, Byoung-Seob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.4
    • /
    • pp.189-196
    • /
    • 2011
  • The main issues of the researches are monitoring environment such as weather or temperature variation and natural accident, and sensor gateways which have mobile device, applications for mobile health care. In this paper, we propose the SFMS(Smart Factory Management System) that can effectively monitor and manage a green smart factory area based on M2M service and smart phone with android OS platform. The proposed system is performed based on the TinyOS-based IEEE 802.15.4 protocol stack. To validate system functionality, we built sensor network environments where were equipped with four application sensors such as Temp/Hum, PIR, door, and camera sensor. We also built and tested the SFMS system to provide a novel model for event detection systems with smart phone.

A Design on The Zone Master Platform based on IIoT communication for Smart Factory Digital Twin (스마트 팩토리 디지털 트윈(Digital Twin)을 위한 IIoT 통신 기반 ZMP(Zone Master Platform) 설계)

  • Park, Seon-Hui;Bae, Jong-Hwan
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.4
    • /
    • pp.81-87
    • /
    • 2020
  • This paper creates a standard node for acquiring sensor data from various industrial sensors (IoT/non-IoT) for the establishment of Smart Factory Digital Twin, and provides inter-compatible data by linking zones by group/process to secure data stability and to ensure the digital twin (Digital Twin) of Smart Factory. The process of the Zone Master platform contains interface specifications to define sensor objects and how sensor interactions between independent systems are performed and carries out individual policies for unique data exchange rules. The interface for execution control of the Zone Master Platform processor provides system management, declaration management for public-subscribe, object management for registering and communicating status information of sensor objects, ownership management for property ownership sharing, time management for data synchronization, and data distribution management for Route information on data exchange.

Development of Multi-function Sensor Integration Module System for Smart Green Building (스마트 그린빌딩 구현을 위한 다기능 센서 통합 모듈 시스템 개발)

  • Kim, Bong-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.4799-4804
    • /
    • 2013
  • Green IT technology for the growth of low-carbon green environment and future development of the new technology. Therefore, in this paper, data generated by the security module for RFID applications, smart green building Sung multi-function sensor integrated module that can be integrated environment for building monitoring and management system has been developed. The development of a thermal sensor, temperature sensor, smog sensor, CO2 sensor, O2 sensor, tension sensor and damage detection sensor module with integrated system module integrated multi-functional sensors implemented in the paper. In real-time monitoring by allowing was design and developed system that can be implemented smart green building environment for the environment inside buildings.

Recent Advancements in Smart Bandages for Wound Healing

  • Ventaka Ramesh Ragnaboina;Tae-Min Jang;Sungkeun Han;Suk-Won Hwang
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.357-369
    • /
    • 2023
  • Wound healing is a complex and dynamic process, making the accurate and timely assessment of skin wounds a crucial aspect of effective wound care management, especially for chronic wounds. Unlike conventional wound dressings that simply cover the wound area once some form of medicine is administered onto the wound, recent studies have introduced versatile approaches to smart wound dressings capable of interacting with wound fluids to monitor physicochemical and pathological parameters to determine the wound healing status. Such electrochemical wound dressings can be integrated with on-demand, closed-loop drug delivery or stimulation systems and ultimately expanded into an ideal technological platform for the prevention, treatment, and management of skin wounds or illnesses. This article briefly reviews the wound healing mechanism and recent strategies for effective wound care management. Specifically, this review discusses the following aspects of smart wound dressings: sensor-integrated smart bandages to detect wound biomarkers, smart bandages developed to accelerate wound healing, and wireless, closed-loop automatic (on-demand) wound healing systems. This review concludes by providing future perspectives on effective wound care management.

An Efficient Key management for Wireless Sensor Network (무선센서 네트워크를 위한 효율적인 키 관리 연구)

  • Park, Sung-Kon
    • Journal of Digital Contents Society
    • /
    • v.13 no.1
    • /
    • pp.129-139
    • /
    • 2012
  • Recently, the smart sensor technologies are rapidly developing in accordance with the technology of implementation in small-size, low-cost, and low power consumption. With these sensor technologies, especially with MEMS and NEMS, the researches on the WSN are actively performing. For the WSN, a network security function is essential even it requires high physical resource level. But the WSN with the smart sensor technologies could not be provided with enough resources for the function because of limited size, computing-power, low-power, and etc. In this paper, we introduce security and key-management protocols of WSN.

Flexible smart sensor framework for autonomous structural health monitoring

  • Rice, Jennifer A.;Mechitov, Kirill;Sim, Sung-Han;Nagayama, Tomonori;Jang, Shinae;Kim, Robin;Spencer, Billie F. Jr.;Agha, Gul;Fujino, Yozo
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.423-438
    • /
    • 2010
  • Wireless smart sensors enable new approaches to improve structural health monitoring (SHM) practices through the use of distributed data processing. Such an approach is scalable to the large number of sensor nodes required for high-fidelity modal analysis and damage detection. While much of the technology associated with smart sensors has been available for nearly a decade, there have been limited numbers of fulls-cale implementations due to the lack of critical hardware and software elements. This research develops a flexible wireless smart sensor framework for full-scale, autonomous SHM that integrates the necessary software and hardware while addressing key implementation requirements. The Imote2 smart sensor platform is employed, providing the computation and communication resources that support demanding sensor network applications such as SHM of civil infrastructure. A multi-metric Imote2 sensor board with onboard signal processing specifically designed for SHM applications has been designed and validated. The framework software is based on a service-oriented architecture that is modular, reusable and extensible, thus allowing engineers to more readily realize the potential of smart sensor technology. Flexible network management software combines a sleep/wake cycle for enhanced power efficiency with threshold detection for triggering network wide operations such as synchronized sensing or decentralized modal analysis. The framework developed in this research has been validated on a full-scale a cable-stayed bridge in South Korea.

Research Regard to Necessity of Smart Water Management Based on IoT Technology (IoT 기술을 활용한 스마트 물관리 필요성에 관한 연구)

  • Choi, Young Hwan;Kim, Yeong Real
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.4
    • /
    • pp.11-18
    • /
    • 2017
  • The Objective of this Study is to Prove the Effectiveness of a Smart Water Management(SWM) Technology. The SWM Technology can Reduce the Production Cost using Internet of Thing(IoT) Technology that Utilizes Remote Metering of Consumer's Water usage and Reduce the Leakage of Supply Facilities. The SWM Demonstration Model Installed a Remote Water Leakage Sensor, Smart Metering and Micro Multi Sensor in Water Supply Facility, and Provided Real-Time Monitoring of the Operation Status. Consumers can be Provided the usage of Tap Water and the Water Puality through a Smart Phone Application. At this Time, we Surveyed Whether Consumers save the Tap Water or Drinking Directly using the Tap Water usage Information. Also, this Study is to Verify the Degree of Improvement of Water Supply Rates and Drinking Water Rate, and to Decrease Consumer's Complaints, Operating Costs, and Water Consumption by the SWM Technology. It is also Established a SWM Model Combined with the IoT Sensor at Supply Facilities, operator monitoring system and explored recovery solution detected events. It means the upbringing of the domestic water industry by developing the related technologies and spreading the SWM to advanced levels.

System and method for detecting gas using smart-phone (스마트폰을 이용한 가스검출시스템 및 검출 방법연구)

  • Bang, Yong-Ki;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.2
    • /
    • pp.129-137
    • /
    • 2015
  • This study is in regard to the gas detection system and gas detection method utilizing smart phone. This study includes; 1) the sensor module attached to the smart phone to detect and measure flammable gas or toxic gas; and 2) gas detection APP which is installed inside the smart phone and recognizes the user information and location information automatically by reading RFID tag indicating the user or the location to detect gas through the contact area where RFID and blue tooth reader is installed inside of the above mentioned smart phone, and then measures the combustible gas or toxic gas by operating above mentioned sensor module and obtains the data thus measured, and above mentioned smart phone is characterized by its transmission of the above mentioned user information, location information and measured data which are obtained by above mentioned gas detecting APP to operation server via communication network. With this, reliability for the location detecting gas by the user, the result of the measurement, etc. can be secured. Furthermore, this provides the effect of preventing artificial manipulation at the time of input which is associated with the identification of the user to be measured by utilizing removable sensor module and application or the mistake resulted from wrong input by the user. In addition, by transmitting the measured data from the sensor module carrying out gas detection to operation server, this provides the effect of making it possible to process the data thus collected to a specialized data for combustible gas or toxic gas.

Implementation of a Remote Bio-Equipment System for Smart Healthy Housing Properties

  • Han, Seung-Hoon
    • KIEAE Journal
    • /
    • v.14 no.6
    • /
    • pp.23-29
    • /
    • 2014
  • It is essential to investigate the structure and the main characteristics of BSN (Bio-Sensor Network) platform in built smart healthcare environment while designing healthy housing facilities. For this study, WSN (Wireless Sensor Network) data transmission technologies have been employed with medical sensors, and optimal medical devices would provide various Web 2.0 services by connecting to the WiBro network. The BSN platform normally recognizes in surroundings of WBAN (Wireless Body Area Network) or WPAN (Wireless Personal Area Network), and it is possible to manage sensor nodes by utilizing SOAP (Simple Object Access Protocol) and REST (REpresentational State Transfer). In addition, the feature of SNMP (Simple Network Management Protocol) for mobile gateway is also included for being adapted to huge network structure. Finally, BSN platform will play a role as important clues for developing personal WSN service models for smart healthy housing properties.