• 제목/요약/키워드: Smart Monitoring Systems

검색결과 893건 처리시간 0.032초

Assessment of a smartphone-based monitoring system and its application

  • Ahn, Hoyong;Choi, Chuluong;Yu, Yeon
    • 대한원격탐사학회지
    • /
    • 제30권3호
    • /
    • pp.383-397
    • /
    • 2014
  • Information technology advances are allowing conventional surveillance systems to be combined with mobile communication technologies, creating ubiquitous monitoring systems. This paper proposes monitoring system that uses smart camera technology. We discuss the dependence of interior orientation parameters on calibration target sheets and compare the accuracy of a three-dimensional monitoring system with camera location calculated by space resectioning using a Digital Surface Model (DSM) generated from stereo images. A monitoring housing is designed to protect a camera from various weather conditions and to provide the camera for power generated from solar panel. A smart camera is installed in the monitoring housing. The smart camera is operated and controlled through an Android application. At last the accuracy of a three-dimensional monitoring system is evaluated using a DSM. The proposed system was then tested against a DSM created from ground control points determined by Global Positioning Systems (GPSs) and light detection and ranging data. The standard deviation of the differences between DSMs are less than 0.12 m. Therefore the monitoring system is appropriate for extracting the information of objects' position and deformation as well as monitoring them. Through incorporation of components, such as camera housing, a solar power supply, the smart camera the system can be used as a ubiquitous monitoring system.

태양광 발전 시스템의 스마트 모니터링 기술개발 (A Development of Smart Monitoring Technique for Photovoltaic Power Systems)

  • 조현철;심광열
    • 전기학회논문지P
    • /
    • 제64권2호
    • /
    • pp.50-56
    • /
    • 2015
  • This paper presents a smart monitoring technique for photovoltaic power systems by using wire and wireless communication networks in which the RS-232/484 and the Zigbee communication networks are inherently established respectively. In the proposed monitoring systems, environmental data sequences and the output power measured by sensors in photovoltaic systems are transferred to PC systems via two communication networks. We made electronic hardware boards for sensors and communication networks to construct its real-time monitoring system and carry out experiments for demonstrating reliability of the proposed monitoring system.

Yield monitoring systems for non-grain crops: A review

  • Md Sazzadul Kabir;Md Ashrafuzzaman Gulandaz;Mohammod Ali;Md Nasim Reza;Md Shaha Nur Kabir;Sun-Ok Chung;Kwangmin Han
    • 농업과학연구
    • /
    • 제51권1호
    • /
    • pp.63-77
    • /
    • 2024
  • Yield monitoring systems have become integral to precision agriculture, providing insights into the spatial variability of crop yield and playing an important role in modern harvesting technology. This paper aims to review current research trends in yield monitoring systems, specifically designed for non-grain crops, including cabbages, radishes, potatoes, and tomatoes. A systematic literature survey was conducted to evaluate the performance of various monitoring methods for non-grain crop yields. This study also assesses both mass- and volume-based yield monitoring systems to provide precise evaluations of agricultural productivity. Integrating load cell technology enables precise mass flow rate measurements and cumulative weighing, offering an accurate representation of crop yields, and the incorporation of image-based analysis enhances the overall system accuracy by facilitating volumetric flow rate calculations and refined volume estimations. Mass flow methods, including weighing, force impact, and radiometric approaches, have demonstrated impressive results, with some measurement error levels below 5%. Volume flow methods, including paddle wheel and optical methodologies, yielded error levels below 3%. Signal processing and correction measures also play a crucial role in achieving accurate yield estimations. Moreover, the selection of sensing approach, sensor layout, and mounting significantly influence the performance of monitoring systems for specific crops.

라이프라인의 Smart-Pipe 시스템 도입을 위한 이익정량화 방안 (A Methodology to Quantifying Benefit for Implementing Smart-Pipe to Lifeline Systems)

  • 전환돈;김중훈;조문수;백천우;유도근
    • 한국방재학회 논문집
    • /
    • 제8권4호
    • /
    • pp.61-66
    • /
    • 2008
  • 상수관망의 노후화에 따른 잦은 파괴로 인해 보다 효율적인 상수관망 모니터링시스템 구축이 중요한 문제가 되었다. 상수관망의 모니터링 시스템의 하나인 "Smart-Pipe 시스템"은 영구적이며 포괄적인 자동화된 형태의 SIM 시스템으로 기존의 모니터링 시스템에 비해 많은 장점을 가지고 있다. Smart-pipe를 도입하기 위해서는 상수관 파괴를 미리 예측하여 갑작스러운 상수관 파괴를 막는 것과 같이 smart-pipe 설치를 통해 발생하는 간접적 이익의 정량화가 우선되어야 한다. 그러나 이와 관련된 연구는 국내외적으로 매우 미비한 실정이다. 본 연구에서는 smart-pipe의 개념을 기존 상수관 모니터링 시스템과 비교하였으며 smartpipe 설치에 따른 이익을 수용가불편시간으로 정량화하는 방안을 제시하였다. 제안된 방법을 고양시의 상수관망에 적용하여 적용성을 검증하였으며, smart-pipe시스템의 도입을 위한 기초자료로 활용될 수 있을 것으로 판단되었다.

Smart Concrete Structures with Optical Fiber Sensors

  • Kim, Ki-Soo
    • KCI Concrete Journal
    • /
    • 제11권3호
    • /
    • pp.109-114
    • /
    • 1999
  • Recently the interest in the safety assessment of civil infrastructures has increased. As bridge structures become large-scale, it is necessary to monitor and maintain the safety of large bridges, which requires smart systems that can make long-term monitoring a reality . Civil engineers have applied monitoring systems to several bridges, such as the New Haeng-Ju Bridge and Riverside Urban Highway Bridge, but these applications have some problems with the sensors for long-term measurement, setup techniques for the bridge monitoring system and the assessment of measured data. In the present study, an optical fiber sensor smart system was tested and confirmed in laboratory tests on the concrete members. By Attaching optical fiber sensors to the structural parts of the Sung-San Bridge, the bridge load test was measured. These smart concrete structure systems can be applied to bridges and the load capacity of the bridge can assessed.

  • PDF

Construction of a Remote Monitoring System in Smart Dust Environment

  • Park, Joonsuu;Park, KeeHyun
    • Journal of Information Processing Systems
    • /
    • 제16권3호
    • /
    • pp.733-741
    • /
    • 2020
  • A smart dust monitoring system is useful for obtaining information on rough terrain that is difficult for humans to access. One of ways to deploy sensors to gather information in smart dust environment is to use an aircraft in the Amazon rainforest to scatter an enormous amount of small and cheap sensors (or smart dust devices), or to use an unmanned spacecraft to throw the sensors on the moon's surface. However, scattering an enormous amount of smart dust devices creates the difficulty of managing such devices as they can be scattered into inaccessible areas, and also causes problems such as bottlenecks, device failure, and high/low density of devices. Of the various problems that may occur in the smart dust environment, this paper is focused on solving the bottleneck problem. To address this, we propose and construct a three-layered hierarchical smart dust monitoring system that includes relay dust devices (RDDs). An RDD is a smart dust device with relatively higher computing/communicating power than a normal smart dust device. RDDs play a crucial role in reducing traffic load for the system. To validate the proposed system, we use climate data obtained from authorized portals to compare the system with other systems (i.e., non-hierarchical system and simple hierarchical system). Through this comparison, we determined that the transmission processing time is reduced by 49%-50% compared to other systems, and the maximum number of connectable devices can be increased by 16-32 times without compromising the system's operations.

The future role of smart structure systems in modern aircraft

  • Becker, J.;Luber, W.;Simpson, J.;Dittrich, K.
    • Smart Structures and Systems
    • /
    • 제1권2호
    • /
    • pp.159-184
    • /
    • 2005
  • The paper intends to summarize some guidelines for future smart structure system application in military aircraft. This preview of system integration is based upon a review on approximately one and a half decades of application oriented aerospace related smart structures research. Achievements in the area of structural health monitoring, adaptive shape, adaptive load bearing devices and active vibration control have been reached, potentials have been identified, several feasibility studies have been performed and some smart technologies have been already implemented. However the realization of anticipated visions and previously initial timescales announced have been rather too optimistic. The current development shall be based on a more realistic basis including more emphasis on fundamental aircraft strength, stiffness, static and dynamic load and stability requirements of aircraft and interdisciplinary integration requirements and improvements of integrated actors, actuator systems and control systems including micro controllers.

Nonlinear free vibration impact on the smart small-scale thermo-mechanical sensors for monitoring the information in sports application

  • Yi Zhang;Maryam Bagheri
    • Steel and Composite Structures
    • /
    • 제50권6호
    • /
    • pp.609-625
    • /
    • 2024
  • This paper presents an in-depth analysis of the nonlinear vibration of microbeams, with a particular emphasis on their application in sports monitoring systems. The research utilizes classical beam theory, modified couple stress theory, and von-Kármán nonlinear parameters to explore the behavior of microbeams. These microbeams are characterized by a non-uniform geometry, with materials that continuously change along the beam radius and a thickness that varies along the beam length. The main contribution lies in its exploration of the stability of smart sensors in sports structures, particularly those with non-uniform geometries. The research findings indicate that these non-uniform microbeams, when used in smart systems made of functionally graded temperature-dependent materials, can operate effectively in thermal environments. The smart system developed in this study demonstrates significant potential for use in sports applications, particularly in monitoring and gathering information. The insights gained from this research contribute to the understanding of the performance and optimization of microbeams in sports applications, particularly in the context of non-uniform geometries. This research, therefore, provides a foundation for the development of advanced, reliable, and efficient monitoring systems in sports applications.

Sensor enriched infrastructure system

  • Wang, Ming L.;Yim, Jinsuk
    • Smart Structures and Systems
    • /
    • 제6권3호
    • /
    • pp.309-333
    • /
    • 2010
  • Civil infrastructure, in both its construction and maintenance, represents the largest societal investment in this country, outside of the health care industry. Despite being the lifeline of US commerce, civil infrastructure has scarcely benefited from the latest sensor technological advances. Our future should focus on harnessing these technologies to enhance the robustness, longevity and economic viability of this vast, societal investment, in light of inherent uncertainties and their exposure to service and even extreme loadings. One of the principal means of insuring the robustness and longevity of infrastructure is to strategically deploy smart sensors in them. Therefore, the objective is to develop novel, durable, smart sensors that are especially applicable to major infrastructure and the facilities to validate their reliability and long-term functionality. In some cases, this implies the development of new sensing elements themselves, while in other cases involves innovative packaging and use of existing sensor technologies. In either case, a parallel focus will be the integration and networking of these smart sensing elements for reliable data acquisition, transmission, and fusion, within a decision-making framework targeting efficient management and maintenance of infrastructure systems. In this paper, prudent and viable sensor and health monitoring technologies have been developed and used in several large structural systems. Discussion will also include several practical bridge health monitoring applications including their design, construction, and operation of the systems.