• Title/Summary/Keyword: Smart Monitoring

Search Result 1,885, Processing Time 0.032 seconds

A Study on the Application of GFRP Rock Bolt Sensor through Field Experiment and Numerical Analysis (현장실험과 수치해석을 통한 GFRP 록볼트 센서의 적용성 연구)

  • Lee, Seungjoo;Chang, Suk-Hyun;Lee, Kang-Il;Kim, Bumjoo;Heo, Joon;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.129-138
    • /
    • 2019
  • In this study, the rebar rock bolt sensor and GFRP rock bolt sensor, which can be monitored, were embedded in a large model slope, and the behavior of slopes occurred in the early stage of slope collapse was analyzed after performing the field failure test, numerical analysis of the individual element method and finite element method. By comparing and analyzing the field test and numerical analysis results, field applicability of rock slope collapse monitoring on the rebar rock bolt sensor and GFRP rock bolt sensor was investigated. Through this study, smart slope collapse prediction and warning system was developed, which can be used to induce effective evacuation of residents living in the collapsible area by detecting landslide and ground decay precursor information in advance.

A multitype sensor placement method for the modal estimation of structure

  • Pei, Xue-Yang;Yi, Ting-Hua;Li, Hong-Nan
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.407-420
    • /
    • 2018
  • In structural health monitoring, it is meaningful to comprehensively utilize accelerometers and strain gauges to obtain the modal information of a structure. In this paper, a modal estimation theory is proposed, in which the displacement modes of the locations without accelerometers can be estimated by the strain modes of selected strain gauge measurements. A two-stage sensor placement method, in which strain gauges are placed together with triaxial accelerometers to obtain more structural displacement mode information, is proposed. In stage one, the initial accelerometer locations are determined through the combined use of the modal assurance criterion and the redundancy information. Due to various practical factors, however, accelerometers cannot be placed at some of the initial accelerometer locations; the displacement mode information of these locations are still in need and the locations without accelerometers are defined as estimated locations. In stage two, the displacement modes of the estimated locations are estimated based on the strain modes of the strain gauge locations, and the quality of the estimation is seen as a criterion to guide the selection of the strain gauge locations. Instead of simply placing a strain gauge at the midpoint of each beam element, the influence of different candidate strain gauge positions on the estimation of displacement modes is also studied. Finally, the modal assurance criterion is utilized to evaluate the performance of the obtained multitype sensor placement. A bridge benchmark structure is used for a numerical investigation to demonstrate the effectiveness of the proposed multitype sensor placement method.

A Text Mining Analysis for Research Trend about Information and Communication Technology in Construction Automation (텍스트마이닝 기법을 활용한 정보통신기술 기반 건설자동화 연구동향 분석)

  • Lim, Si Yeong;Kim, Seok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.6
    • /
    • pp.13-23
    • /
    • 2016
  • Construction automation based on information and communication technology(ICT) has been studied for improving productivity in the construction industry. This study investigates domestic research trends in ICT-based construction automation using text mining techniques. The results show that 'Technology to collect and analyze project progress(26%)' and 'Technology to analyze and apply the automation element of construction machinery(28%)' are the major research area. The word of 'construction information' is showed as important keywords in the area of 'Technology to collect and analyze project progress', and researches focusing on resource management, site management, information management, and real-time information monitoring have been mainly conducted. The word of 'ubiquitous' is shown as important keywords in the area of 'Technology to analyze and apply the automation element of construction machinery', and researches focusing on ubiquitous information management, ubiquitous site management, and measurement system have been mainly conducted.

Damage detection in plate structures using frequency response function and 2D-PCA

  • Khoshnoudian, Faramarz;Bokaeian, Vahid
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.427-440
    • /
    • 2017
  • One of the suitable structural damage detection methods using vibrational characteristics are damage-index-based methods. In this study, a damage index for identifying damages in plate structures using frequency response function (FRF) data has been provided. One of the significant challenges of identifying the damages in plate structures is high number of degrees of freedom resulting in decreased damage identifying accuracy. On the other hand, FRF data are of high volume and this dramatically decreases the computing speed and increases the memory necessary to store the data, which makes the use of this method difficult. In this study, FRF data are compressed using two-dimensional principal component analysis (2D-PCA), and then converted into damage index vectors. The damage indices, each of which represents a specific condition of intact or damaged structures are stored in a database. After computing damage index of structure with unknown damage and using algorithm of lookup tables, the structural damage including the severity and location of the damage will be identified. In this study, damage detection accuracy using the proposed damage index in square-shaped structural plates with dimensions of 3, 7 and 10 meters and with boundary conditions of four simply supported edges (4S), three clamped edges (3C), and four clamped edges (4C) under various single and multiple-element damage scenarios have been studied. Furthermore, in order to model uncertainties of measurement, insensitivity of this method to noises in the data measured by applying values of 5, 10, 15 and 20 percent of normal Gaussian noise to FRF values is discussed.

Implementation of Real-time Video Surveillance System based on Multi-Screen in Mobile-phone Environment (스마트폰 환경에서의 멀티스크린 기반의 실시간 비디오 감시 시스템 개발)

  • Kim, Dae-Jin
    • Journal of Digital Contents Society
    • /
    • v.18 no.6
    • /
    • pp.1009-1015
    • /
    • 2017
  • Recently, video surveillance is becoming more and more common as many camera are installed due to crime, terrorism, traffic and security. And systems that control cameras are becoming increasingly general. Video input from the installed camera is monitored by the multiscreen at the central control center, it is essential to simultaneously monitor multiscreen in real-time to quickly respond to situations or dangers. However, monitoring of multiscreen in a mobile environment such as a smart phone is not applied to hardware specifications or network bandwidth problems. For resolving these problems, in this paper, we propose a system that can monitor multiscreen in real-time in mobile-phone environment. We reconstruct the desired multiscreen through transcoding, it is possible to monitor continuously video streaming of multiple cameras, and to have the advantage of being mobile in mobile-phone environment.

Investigation of mode identifiability of a cable-stayed bridge: comparison from ambient vibration responses and from typhoon-induced dynamic responses

  • Ni, Y.Q.;Wang, Y.W.;Xia, Y.X.
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.447-468
    • /
    • 2015
  • Modal identification of civil engineering structures based on ambient vibration measurement has been widely investigated in the past decades, and a variety of output-only operational modal identification methods have been proposed. However, vibration modes, even fundamental low-order modes, are not always identifiable for large-scale structures under ambient vibration excitation. The identifiability of vibration modes, deficiency in modal identification, and criteria to evaluate robustness of the identified modes when applying output-only modal identification techniques to ambient vibration responses were scarcely studied. In this study, the mode identifiability of the cable-stayed Ting Kau Bridge using ambient vibration measurements and the influence of the excitation intensity on the deficiency and robustness in modal identification are investigated with long-term monitoring data of acceleration responses acquired from the bridge under different excitation conditions. It is observed that a few low-order modes, including the second global mode, are not identifiable by common output-only modal identification algorithms under normal ambient excitations due to traffic and monsoon. The deficient modes can be activated and identified only when the excitation intensity attains a certain level (e.g., during strong typhoons). The reason why a few low-order modes fail to be reliably identified under weak ambient vibration excitations and the relation between the mode identifiability and the excitation intensity are addressed through comparing the frequency-domain responses under normal ambient vibration excitations and under typhoon excitations and analyzing the wind speeds corresponding to different response data samples used in modal identification. The threshold value of wind speed (generalized excitation intensity) that makes the deficient modes identifiable is determined.

Application of model reduction technique and structural subsection technique on optimal sensor placement of truss structures

  • Lu, Lingling;Wang, Xi;Liao, Lijuan;Wei, Yanpeng;Huang, Chenguang;Liu, Yanchi
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.355-373
    • /
    • 2015
  • An optimal sensor placement (OSP) method based on structural subsection technique (SST) and model reduction technique was proposed for modal identification of truss structures, which was conducted using genetic algorithm (GA). The constraints of GA variables were determined by SST in advance. Subsequently, according to model reduction technique, the optimal group of master degrees of freedom and the optimal objective function value were obtained using GA in a case of the given number of sensors. Correspondingly, the optimal number of sensors was determined according to optimal objective function values in cases of the different number of sensors. The proposed method was applied on a scaled jacket offshore platform to get its optimal number of sensors and the corresponding optimal sensor layout. Then modal kinetic energy and modal assurance criterion were adopted to evaluate vibration energy and mode independence property. The experiment was also conducted to verify the effectiveness of the selected optimal sensor layout. The results showed that experimental modes agreed reasonably well with numerical results. Moreover the influence of the proposed method using different optimal algorithms and model reduction technique on optimal results was also compared. The results showed that the influence was very little.

Experimental validation of Kalman filter-based strain estimation in structures subjected to non-zero mean input

  • Palanisamy, Rajendra P.;Cho, Soojin;Kim, Hyunjun;Sim, Sung-Han
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.489-503
    • /
    • 2015
  • Response estimation at unmeasured locations using the limited number of measurements is an attractive topic in the field of structural health monitoring (SHM). Because of increasing complexity and size of civil engineering structures, measuring all structural responses from the entire body is intractable for the SHM purpose; the response estimation can be an effective and practical alternative. This paper investigates a response estimation technique based on the Kalman state estimator to combine multi-sensor data under non-zero mean input excitations. The Kalman state estimator, constructed based on the finite element (FE) model of a structure, can efficiently fuse different types of data of acceleration, strain, and tilt responses, minimizing the intrinsic measurement noise. This study focuses on the effects of (a) FE model error and (b) combinations of multi-sensor data on the estimation accuracy in the case of non-zero mean input excitations. The FE model error is purposefully introduced for more realistic performance evaluation of the response estimation using the Kalman state estimator. In addition, four types of measurement combinations are explored in the response estimation: strain only, acceleration only, acceleration and strain, and acceleration and tilt. The performance of the response estimation approach is verified by numerical and experimental tests on a simply-supported beam, showing that it can successfully estimate strain responses at unmeasured locations with the highest performance in the combination of acceleration and tilt.

Development of an IAQ Index for Indoor Garden Based IoT Applications for Residents' Health Management (실내거주자 건강 관리를 위한 IoT기반 실내정원용 IAQ지수 개발)

  • Lee, Jeong-Hun;An, Sun-Min;Kwak, Min-Jung;Kim, Kwang Jin;Kim, Ho-Hyun
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.5
    • /
    • pp.421-432
    • /
    • 2018
  • Objectives: In this study, we started to develop an indoor garden integrated IoT solution based on IAQ (indoor air quality) and interconnection with an environmental database for smart management of indoor gardens. The purpose of this study was to develop and apply an integrated solution for customized air purification from an indoor garden through big data analysis using IoT technology. Methods: An IoT-based IAQ monitoring system was established in three households within a new apartment building. Based on real-time and long-term data collected, $PM_{2.5}$, $CO_2$, temperature, and humidity changes were compared to those of indoor garden applications and the analyzed results were indexed. Results As a result of the installation, all three households had no results exceeding the standard for indoor air pollution on average $PM_{2.5}$ and $CO_2$ indices. In the case of indoor garden installation, the IAQ index increased to the "Good" section after the installation, and readings in the "Bad" section shown before the installation disappeared. The comfort index also did not dip into the "Uncomfortable" section, where it had been preinstallation, and significantly lowered the average score from "Uncomfortable for sensitive groups" to "Good". Overall, the IAQ composite index for the generation of installations decreased the "Good" interval, but "Bad" did not appear. Conclusions In this study on developing an integrated solution for IAQ based on IoT indoor gardens, big data was analyzed to determine IAQ and comfort indexes and an IAQ composite index. Through this process, it became understood that it is necessary to monitor IAQ based on IoT.

A Study on the Estimation of Blood Pressure Based on the Magneto-Plethysmography for Smart Healthcare (스마트 헬스케어를 위한 자계용적맥파 기반 혈압 추정에 관한 연구)

  • Lee, Seong-Su;Lee, Kang-Hwi;Kim, Sang-Min;Lee, Hyeok-Jae;Lee, Byoung-Hun;Kim, Kyeoung-Seop;Lee, Jeong-Whan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.917-927
    • /
    • 2018
  • High blood pressure causes various cardiovascular diseases and is associated with mortality. Periodic self-monitoring and recording of blood pressure is very helpful in preventing the occurrence of secondary diseases caused by hypertension. However, existing cuff-type blood pressure monitors have many limitations. As an alternative of that, a method of estimating the blood pressure by measuring the velocity change of the blood flow using the photo plethysmography is widely known. However, photo plethysmography have a low correlation with blood flow. So, we will propose an algorithm for estimating blood pressure using the relationship between velocity change of blood flow measured by magnetic field instead of photo plethysmography and electrocardiogram. For this purpose, First, we analyzed the correlation between photo plethysmography and magneto plethysmography. the correlation between MPG and PPG was r = 0.9449. Second, we compared estimated blood pressure and measured blood pressure. In the four experiment each result was r = 0.5737, r = 0.7863, r = 0.5669, and r = 0.7445.