• Title/Summary/Keyword: Smart Mirror

Search Result 96, Processing Time 0.024 seconds

IoT Multi Control Platform by Finger Gesture and Voice Recognition (Finger Gesture와 Voice Recognition을 활용한 IoT 통합 제어 웹 플랫폼)

  • Jinhyeong Kang;Hanju Kim;Dong Ho Kim
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.236-239
    • /
    • 2022
  • 증강현실로 날씨, 뉴스 요약 등이 제공되거나 AI 비서 기능을 제공하는 스마트 미러(smart mirror)가 개발되고 있다. 본 작품에서는 IoT 통합제어, 뉴스 요약 및 날씨 정보 제공 등의 서비스를 하나의 웹 플랫폼으로 구축하고 이를 손가락 제스쳐 및 음성 명령으로 제어하는 것을 제안하고 구현하였다. 본 작품에서는 음성 인식을 통해 IoT 서비스를 직관적으로 이용할 수 있게끔 설계하여 사용자의 편의성을 높였으며, 디바이스를 직접 터치하는 방식이 아닌 finger gesture로 제어하는 방식을 채택해, 디바이스 유지 보수 및 위생 문제를 해결하였다. 단순 IoT 통합 제어 기능뿐만 아니라 다양한 컨텐츠 및 기능을 제공함으로써 통합 플랫폼의 기능을 수행할 수 있도록 하였다. 뉴스 홈페이지에서 Crawling한 뉴스를 text rank 알고리즘을 이용. 자동으로 요약하는 기능과, 사용자의 IP를 기반으로 위도와 경도를 추론, 해당 지역의 일기 예보 정보를 표현해 주는 등 단순 IoT 제어 플랫폼이 아닌, 통합 플랫폼의 기능을 다하도록 설계하였다. 이처럼 다양한 정보를 압축해서 사용자가 편하게 볼 수 있도록 제공하며, 직관적인 two track 제어 방식을 채택. 사용 대상의 편의성을 증대시켜 본 프로젝트는 기존 프로젝트보다 사용자에게 더 나은 사용 경험을 제공할 것이다.

  • PDF

Optical Design and Tolerance Analysis for UVO-Multiband Polarizing Imager System

  • Han, Jimin;Chang, Seunghyuk;Park, Woojin;Lee, Sunwoo;Ahn, Hojae;Kim, Geon Hee;Lee, Dae-Hee;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.68.2-68.2
    • /
    • 2020
  • UVO-Multiband Polarizing Imager System (UVOMPIS) is an ultraviolet to visible light multi-wavelength polarization/imaging system for Compact Advanced Satellite. We developed Linear Astigmatism Free-Three Mirror System (LAF-TMS) D200F2 as an optical system of UVOMPIS which has an entrance pupil diameter of 200 mm, a focal ratio of 2, a field of view of 2° × 4°. LAF-TMS is a confocal off-axis reflecting telescope system that removes linear astigmatism, and its all mirrors (M1, M2, M3) are optimized with the freeform surface to reduce high-order aberrations. Through the sensitivity analysis and Monte-Carlo simulation as the tolerance analysis, we can confirm the feasibility of the system, relatively sensitive parameters (tilt, decenter, despace, surface RMS error), and considerations for optomechanical design. From the sensitivity analysis, we can discover the relatively sensitive optical alignment parameters to a single perturbation. Further more, in the monte-carlo simulation, we investigate the minimum tolerance budget satisfying the required optical performance and whether the tolerance range is satisfied within manufacturing error.

  • PDF

Electrochromic Device for the Reflective Type Display Using Reversible Electrodeposition System

  • Kim, Tae-Youb;Cho, Seong M.;Ah, Chil Seong;Suh, Kyung-Soo;Ryu, Hojun;Chu, Hye Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.232.1-232.1
    • /
    • 2014
  • The green displays are the human friendly displays, the nature friendly displays, and the economical displays. Electrochromic displays are low cost and environmental devices because they do have more choice of colours and use much less power. The elements of the electrochromic devices consist of at least two conductors, an electrochromic material and an electrolyte. The optical properties were obtained using the optical contrast between the transparency of the substrate and the coloured state of the electrochromic materials. These devices can be fully flexible and printable. Due to the characteristics of the high coloration efficiency and memory effects, the electrochromic devices have been used in various applications such as information displays, smart windows, light shutters and electronic papers. Among these technical fields switchable mirrors have been received much attention in the applicative point of view of various electronic devices production. We have developed a novel silver (Ag) deposition-based electrochromic device for the reversible electrodeposition (RED) system. The electrochromic device can switch between transparent states and mirror states in response to a change in the applied voltage. The dynamic range of transmittance percent (%) for the fabricated device is about 90% at 550 nm wavelength. Also, we successfully fabricated the large area RED display system using the parted electrochromic cells of the honey comb structure.

  • PDF

A study about flat mirror type solar thermal generation system to independently supply electricity on water resources management system (수자원 관리 시스템 독립 전력공급을 위한 평판형 태양열 발전 시스템 기초구현방안 연구)

  • Lee, Sang-Hun;Seo, Tae-Il;Jung, Seung-Kwon;Gwon, Yong-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5067-5073
    • /
    • 2015
  • Recently, various researches about water resources management system have been conducted in order to handle many problems, for example, climate change can provoke rapid change of water circulation, continuous population increase, population concentration phenomenon and so on. For population concentration region, many researches about water resources management system have been carried out, but many regions far away from civilization have not been handled as research topics. Especially these regions always need electricity supply infra, but significant costs will be required to construct the infra. Therefore this paper presents a methodology in order to generate the electricity from new renewable energy resources and supply the electricity into these region. For this, solar thermal generation system was experimentally studied. Moreover, this solar power generation system was considered as an important component to establish an ESS (Energy Storage System).

Implementation of Hair Style Recommendation System Based on Big data and Deepfakes (빅데이터와 딥페이크 기반의 헤어스타일 추천 시스템 구현)

  • Tae-Kook Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.3
    • /
    • pp.13-19
    • /
    • 2023
  • In this paper, we investigated the implementation of a hairstyle recommendation system based on big data and deepfake technology. The proposed hairstyle recommendation system recognizes the facial shapes based on the user's photo (image). Facial shapes are classified into oval, round, and square shapes, and hairstyles that suit each facial shape are synthesized using deepfake technology and provided as videos. Hairstyles are recommended based on big data by applying the latest trends and styles that suit the facial shape. With the image segmentation map and the Motion Supervised Co-Part Segmentation algorithm, it is possible to synthesize elements between images belonging to the same category (such as hair, face, etc.). Next, the synthesized image with the hairstyle and a pre-defined video are applied to the Motion Representations for Articulated Animation algorithm to generate a video animation. The proposed system is expected to be used in various aspects of the beauty industry, including virtual fitting and other related areas. In future research, we plan to study the development of a smart mirror that recommends hairstyles and incorporates features such as Internet of Things (IoT) functionality.

Packaging Technology for the Optical Fiber Bragg Grating Multiplexed Sensors (광섬유 브래그 격자 다중화 센서 패키징 기술에 관한 연구)

  • Lee, Sang Mae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.23-29
    • /
    • 2017
  • The packaged optical fiber Bragg grating sensors which were networked by multiplexing the Bragg grating sensors with WDM technology were investigated in application for the structural health monitoring of the marine trestle structure transporting the ship. The optical fiber Bragg grating sensor was packaged in a cylindrical shape made of aluminum tubes. Furthermore, after the packaged optical fiber sensor was inserted in polymeric tube, the epoxy was filled inside the tube so that the sensor has resistance and durability against sea water. The packaged optical fiber sensor component was investigated under 0.2 MPa of hydraulic pressure and was found to be robust. The number and location of Bragg gratings attached at the trestle were determined where the trestle was subject to high displacement obtained by the finite element simulation. Strain of the part in the trestle being subjected to the maximum load was analyzed to be ${\sim}1000{\mu}{\varepsilon}$ and thus shift in Bragg wavelength of the sensor caused by the maximum load of the trestle was found to be ~1,200 pm. According to results of the finite element analysis, the Bragg wavelength spacings of the sensors were determined to have 3~5 nm without overlapping of grating wavelengths between sensors when the trestle was under loads and thus 50 of the grating sensors with each module consisting of 5 sensors could be networked within 150 nm optical window at 1550 nm wavelength of the Bragg wavelength interrogator. Shifts in Bragg wavelength of the 5 packaged optical fiber sensors attached at the mock trestle unit were well interrogated by the grating interrogator which used the optical fiber loop mirror, and the maximum strain rate was measured to be about $235.650{\mu}{\varepsilon}$. The modelling result of the sensor packaging and networking was in good agreements with experimental result each other.