• 제목/요약/키워드: Smart Frame

검색결과 287건 처리시간 0.019초

Semi-active control of seismically excited structures with variable orifice damper using block pulse functions

  • Younespour, Amir;Ghaffarzadeh, Hosein
    • Smart Structures and Systems
    • /
    • 제18권6호
    • /
    • pp.1111-1123
    • /
    • 2016
  • The present study aims at proposing an analytical method for semi-active structural control by using block pulse functions. The performance of the resulting controlled system and the requirements of the control devices are highly dependent on the control algorithm employed. In control problems, it is important to devise an accurate analytical method with less computational expenses. Block pulse functions (BPFs) set proved to be the most fundamental and it enjoyed immense popularity in different applications in the area of numerical analysis in systems science and control. This work focused on the application of BPFs in the control algorithm concerning decrease the computational expenses. Variable orifice dampers (VODs) are one of the common semi-active devices that can be used to control the response of civil Structures during seismic loads. To prove the efficiency of the proposed method, numerical simulations for a 10-story shear building frame equipped with VODs are presented. The controlled response of the frame was compared with results obtained by controlling the frame by the classical clipped-optimal control method based on linear quadratic regulator theory. The simulation results of this investigation indicated the proposed method had an acceptable accuracy with minor computational expenses and it can be advantageous in reducing seismic responses.

Seismic performance of concrete frame structures reinforced with superelastic shape memory alloys

  • Alam, M. Shahria;Nehdi, Moncef;Youssef, Maged A.
    • Smart Structures and Systems
    • /
    • 제5권5호
    • /
    • pp.565-585
    • /
    • 2009
  • Superelastic Shape Memory Alloys (SMAs) are gaining acceptance for use as reinforcing bars in concrete structures. The seismic behaviour of concrete frames reinforced with SMAs is being assessed in this study. Two eight-storey concrete frames, one of which is reinforced with regular steel and the other with SMAs at the plastic hinge regions of beams and regular steel elsewhere, are designed and analyzed using 10 different ground motion records. Both frames are located in the highly seismic region of Western Canada and are designed and detailed according to current seismic design standards. The validation of a finite element (FE) program that was conducted previously at the element level is extended to the structure level in this paper using the results of a shake table test of a three-storey moment resisting steel RC frame. The ten accelerograms that are chosen for analyzing the designed RC frames are scaled based on the spectral ordinate at the fundamental periods of the frames. The behaviour of both frames under scaled seismic excitations is compared in terms of maximum inter-storey drift, top-storey drift, inter-storey residual drift, and residual top-storey drift. The results show that SMA-RC frames are able to recover most of its post-yield deformation, even after a strong earthquake.

객체의 움직임을 고려한 탐색영역 설정에 따른 가중치를 공유하는 CNN구조 기반의 객체 추적 (Object Tracking based on Weight Sharing CNN Structure according to Search Area Setting Method Considering Object Movement)

  • 김정욱;노용만
    • 한국멀티미디어학회논문지
    • /
    • 제20권7호
    • /
    • pp.986-993
    • /
    • 2017
  • Object Tracking is a technique for tracking moving objects over time in a video image. Using object tracking technique, many research are conducted such a detecting dangerous situation and recognizing the movement of nearby objects in a smart car. However, it still remains a challenging task such as occlusion, deformation, background clutter, illumination variation, etc. In this paper, we propose a novel deep visual object tracking method that can be operated in robust to many challenging task. For the robust visual object tracking, we proposed a Convolutional Neural Network(CNN) which shares weight of the convolutional layers. Input of the CNN is a three; first frame object image, object image in a previous frame, and current search frame containing the object movement. Also we propose a method to consider the motion of the object when determining the current search area to search for the location of the object. Extensive experimental results on a authorized resource database showed that the proposed method outperformed than the conventional methods.

위젯과 보안기능을 탑재한 IoT기반 스마트액자(BeeHiveFrame) (IoT-based Smart Photo Frame Containing Widget and Security Functions(BeeHiveFrame))

  • 권용진;김판겸;김우철;박예운;김봉재;황영섭
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 추계학술발표대회
    • /
    • pp.880-881
    • /
    • 2016
  • 디지털액자가 고전적 액자의 향취를 주며 또한 사진을 바꿀 수 있는 기능도 제공하지만 아직 새 흐름이 되는 못했다. 그 이유는 비싼 가격과 사진을 전송하기가 불편하기 때문이다. 우리는 디지털 액자로 사진 전송을 쉽게 하고, 거기에 더하여 위젯과 보안 기능을 추가하는 연구를 하였다. 사진 전송을 위하여 AWS(Amazon Web Service) 서버를 사용하는데 AWS 서버는 언제 어디서나 원할 때면 사진을 WiFi로 전송할 수 있게 한다. 이는 현재 사용하는 USB나 SD 카드를 이용하여 디지털 사진을 전송하는 것보다 훨씬 편리하다. 우리의 디지털 액자를 사용하면 다른 사람과 사진 교환이 쉽고 따라서 가족, 친구, 동료 사이의 친밀감도 쉽게 높일 수 있다.

Damage detection for truss or frame structures using an axial strain flexibility

  • Yan, Guirong;Duan, Zhongdong;Ou, Jinping
    • Smart Structures and Systems
    • /
    • 제5권3호
    • /
    • pp.291-316
    • /
    • 2009
  • Damage detection using structural classical deflection flexibility has received considerable attention due to the unique features of the flexibility in the last two decades. However, for relatively complex structures, most methods based on classical deflection flexibility fail to locate damage sites to the exact members. In this study, for structures whose members are dominated by axial forces, such as truss structures, a more feasible flexibility for damage detection is proposed, which is called the Axial Strain (AS) flexibility. It is synthesized from measured modal frequencies and axial strain mode shapes which are expressed in terms of translational mode shapes. A damage indicator based on AS flexibility is proposed. In addition, how to integrate the AS flexibility into the Damage Location Vector (DLV) approach (Bernal and Gunes 2004) to improve its performance of damage localization is presented. The methods based on AS flexbility localize multiple damages to the exact members and they are suitable for the cases where the baseline data of the intact structure is not available. The proposed methods are demonstrated by numerical simulations of a 14-bay planar truss and a five-story steel frame and experiments on a five-story steel frame.

Optimum design of steel frame structures considering construction cost and seismic damage

  • Kaveh, A.;Fahimi-Farzam, M.;Kalateh-Ahani, M.
    • Smart Structures and Systems
    • /
    • 제16권1호
    • /
    • pp.1-26
    • /
    • 2015
  • Minimizing construction cost and reducing seismic damage are two conflicting objectives in the design of any new structure. In the present work, we try to develop a framework in order to solve the optimum performance-based design problem considering the construction cost and the seismic damage of steel moment-frame structures. The Park-Ang damage index is selected as the seismic damage measure because it is one of the most realistic measures of structural damage. The non-dominated sorting genetic algorithm (NSGA-II) is employed as the optimization algorithm to search the Pareto optimal solutions. To improve the time efficiency of the proposed framework, three simplifying strategies are adopted: first, simplified nonlinear modeling investigating minimum level of structural modeling sophistication; second, fitness approximation decreasing the number of fitness function evaluations; third, wavelet decomposition of earthquake record decreasing the number of acceleration points involved in time-history loading. The constraints of the optimization problem are considered in accordance with Federal Emergency Management Agency's (FEMA) recommended seismic design specifications. The results from numerical application of the proposed framework demonstrate the efficiency of the framework in solving the present multi-objective optimization problem.

Vision-based support in the characterization of superelastic U-shaped SMA elements

  • Casciati, F.;Casciati, S.;Colnaghi, A.;Faravelli, L.;Rosadini, L.;Zhu, S.
    • Smart Structures and Systems
    • /
    • 제24권5호
    • /
    • pp.641-648
    • /
    • 2019
  • The authors investigate the feasibility of applying a vision-based displacement-measurement technique in the characterization of a SMA damper recently introduced in the literature. The experimental campaign tests a steel frame on a uni-axial shaking table driven by sinusoidal signals in the frequency range from 1Hz to 5Hz. Three different cameras are used to collect the images, namely an industrial camera and two commercial smartphones. The achieved results are compared. The camera showing the better performance is then used to test the same frame after its base isolation. U-shaped, shape-memory-alloy (SMA) elements are installed as dampers at the isolation level. The accelerations of the shaking table and those of the frame basement are measured by accelerometers. A system of markers is glued on these system components, as well as along the U-shaped elements serving as dampers. The different phases of the test are discussed, in the attempt to obtain as much possible information on the behavior of the SMA elements. Several tests were carried out until the thinner U-shaped element went to failure.

Pilot study for investigating behavior of recentering frame connection equipped with friction damper

  • Kim, Young Chan;Hu, Jong Wan
    • Steel and Composite Structures
    • /
    • 제44권4호
    • /
    • pp.569-586
    • /
    • 2022
  • This study introduces a novel friction damper as a component of a recentering frame connection, to solve the problem of structural repair costs, caused by stiffness deterioration and brittle fracture of the central brace frame (CBF). The proposed damper consists of shape memory alloy (SMA) bars with pretension applied to them to improve the stability. SMAs reduce the residual displacement by virtue of the properties of the materials themselves; in addition, a pretension can be applied to partially improve their energy dissipation capacity. The damper also consists of a friction device equipped with friction bolts for increased energy dissipation. Therefore, a study was conducted on the effects of the friction device as well as the pretension forces on the friction damper. For performance verification, 12 cases were studied and analyzed using ABAQUS program. In addition, the friction and pretension forces were used as variables in each case, and the results were compared. As a result, when the pretension and friction force are increased, the energy dissipation capacity gradually increases by up to about 94% and the recentering capacity decreases by up to about 55%. Therefore, it has been shown that SMA bars with adequate pretension in combination with bolts with adequate frictional force effectively reduce residual deformation and increase damper capacity. Thus, this study has successfully proposed a novel friction damper with excellent performance in terms of recentering and energy dissipation capacity.

Block-based Self-organizing TDMA for Reliable VDES in SANETs

  • Sol-Bee Lee;Jung-Hyok Kwon;Bu-Young Kim;Woo-Seong Shim;Dongwan Kim;Eui-Jik Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권2호
    • /
    • pp.511-527
    • /
    • 2024
  • This paper proposes a block-based self-organizing time-division multiple access (BSO-TDMA) protocol for very high frequency (VHF) data exchange system (VDES) in shipborne ad-hoc networks (SANETs). The BSO-TDMA reduces the collisions caused by the simultaneous transmission of automatic identification system (AIS) messages by uniformly allocating channel resources using a block-wise frame. For this purpose, the BSO-TDMA includes two functional operations: (1) frame configuration and (2) slot allocation. The first operation consists of block division and block selection. A frame is divided into multiple blocks, each consisting of fixed-size subblocks, by using the reporting interval (RI) of the ship. Then, the ship selects one of the subblocks within a block by considering the number of occupied slots for each subblock. The second operation allocates the slots within the selected subblock for transmitting AIS messages. First, one of the unoccupied slots within the selected subblock is allocated for the periodic transmission of position reports. Next, to transmit various types of AIS messages, an unoccupied slot is randomly selected from candidate slots located around the previously allocated slot. Experimental simulations are conducted to evaluate the performance of BSO-TDMA. The results show that BSO-TDMA has better performance than that of the existing SOTDMA.

Synergetics based damage detection of frame structures using piezoceramic patches

  • Hong, Xiaobin;Ruan, Jiaobiao;Liu, Guixiong;Wang, Tao;Li, Youyong;Song, Gangbing
    • Smart Structures and Systems
    • /
    • 제17권2호
    • /
    • pp.167-194
    • /
    • 2016
  • This paper investigates the Synergetics based Damage Detection Method (SDDM) for frame structures by using surface-bonded PZT (Lead Zirconate Titanate) patches. After analyzing the mechanism of pattern recognition from Synergetics, the operating framework with cooperation-competition-update process of SDDM was proposed. First, the dynamic identification equation of structural conditions was established and the adjoint vector (AV) set of original vector (OV) set was obtained by Generalized Inverse Matrix (GIM).Then, the order parameter equation and its evolution process were deduced through the strict mathematics ratiocination. Moreover, in order to complete online structural condition update feature, the iterative update algorithm was presented. Subsequently, the pathway in which SDDM was realized through the modified Synergetic Neural Network (SNN) was introduced and its assessment indices were confirmed. Finally, the experimental platform with a two-story frame structure was set up. The performances of the proposed methodology were tested for damage identifications by loosening various screw nuts group scenarios. The experiments were conducted in different damage degrees, the disturbance environment and the noisy environment, respectively. The results show the feasibility of SDDM using piezoceramic sensors and actuators, and demonstrate a strong ability of anti-disturbance and anti-noise in frame structure applications. This proposed approach can be extended to the similar structures for damage identification.