• Title/Summary/Keyword: Smart Balance Board

Search Result 3, Processing Time 0.017 seconds

Immersive Smart Balance Board with Multiple Feedback (다중 피드백을 지원하는 몰입형 스마트 밸런스 보드)

  • Seung-Yong Lee;Seonho Lee;Junesung Park;Min-Chul Shin;Seung-Hyun Yoon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.3
    • /
    • pp.171-178
    • /
    • 2024
  • Exercises using a Balance Board (BB) are effective in developing balance, strengthening core muscles, and improving physical fitness and concentration. In particular, the Smart Balance Board (SBB), which integrates with various digital content, provides appropriate feedback compared to traditional balance boards, maximizing the effectiveness of the exercise. However, most systems only offer visual and auditory feedback, failing to evaluate the impact on user engagement, interest, and the accuracy of exercise postures. This study proposes an Immersive Smart Balance Board (I-SBB) that utilizes multiple sensors to enable training with various feedback mechanisms and precise postures. The proposed system, based on Arduino, consists of a gyro sensor for measuring the board's posture, a communication module for wired/wireless communication, an infrared sensor to guide the user's foot placement, and a vibration motor for tactile feedback. The board's posture measurements are smoothly corrected using a Kalman Filter, and the multi-sensor data is processed in real-time using FreeRTOS. The proposed I-SBB is shown to be effective in enhancing user concentration and engagement, as well as generating interest, by integrating with diverse content.

EMS Application Effect of Lower Extremities to Improve Static Balance Capability (정적 균형능력 향상을 위한 하지 의류의 EMS 적용 효과)

  • Hwang, Sunkyu;Park, Jinhee;Kim, Jooyong
    • Journal of Fashion Business
    • /
    • v.25 no.4
    • /
    • pp.151-160
    • /
    • 2021
  • The purpose of this study was to investigate whether there were improvements on balance when both ankle-jointed calf muscles and hip muscles, which affect balance capabilities, were activated through taping techniques and EMS. In this study, the One Leg Standing Test, a static balance test, was conducted by experimenting on a flat floor, foam pad, and a stretching board with a gradient of 20 degrees, respectively, to study static balance capabilities in different situations. Nine healthy men in their 20s were measured five times every five minutes considering muscle fatigue, and the difference between each variable was analyzed through post-test using nonparametric statistical analysis. Our results showed an equal increase in static balance capability was similar when EMS was applied only to calf muscles and only to hip muscles. Notably most improvements were seen when wearing calf supporters and taping technology pants, and applying EMS together. It was also found that the difference between EMS electric stimulation and balance capability was greater when wearing and applying supporters and taping technology pants. Based on the results of the present study, a muscle support band and EMS of taping techniques can improve balance capabilities. These findings are expected to form a basis for solutions Improving the balance capabilities

Use of an Electric Muscle Stimulation Thigh Band and High-intensity Circuit Training to Activate the Thigh Muscle (무릎 밴드를 이용한 EMS와 High-intensity Circuit Training의 대퇴근육 활성화 효과)

  • Hanna Park;Jinhee Park;Jooyong Kim
    • Journal of Fashion Business
    • /
    • v.27 no.2
    • /
    • pp.39-51
    • /
    • 2023
  • The purpose of this study was to effectively improve the thigh muscles of adult women working from home due to COVID-19. In this study, ten adult women working from home performed 1) an electromyography test, 2) a static balance test on a balance board, and a 3) dynamic balance test by squatting on a Bosu ball four times: before electric muscle stimulation (EMS), after EMS, after high-intensity circuit training (HICT), and after EMS plus HICT. For this test, EMS was attached to a medical knee support to manufacture an EMS knee band that could be easily worn regardless of the location. For the experiment, EMS(electric muscle stimulation) was attached to the medical knee protector to manufacture an EMS knee band that can be easily worn regardless of location, and was measured based on the right foot. The study results confirmed that in all tests (electromyography test, static balance test on the balance board, and dynamic balance test by squatting on a Bosu ball), thigh strength improved in the order of treatment before EMS, after EMS, after HICT, and after EMS plus HICT. The study showed that people working from home or with activity restrictions due to COVID-19 had better exercise effects when wearing the EMS knee band and performing HICT, even in a small space.