• Title/Summary/Keyword: Small-scale field

Search Result 585, Processing Time 0.033 seconds

Clustering Triangular Routing Protocol in Wireless Sensor Network (무선 센서 네트워크에서 삼각 클러스터링 라우팅 기법)

  • Nurhayati, Nurhayati;Lee, Kyung Oh;Choi, Sung Hee
    • Annual Conference of KIPS
    • /
    • 2010.11a
    • /
    • pp.913-916
    • /
    • 2010
  • Wireless sensor networks consist of small battery powered devices with limited energy resources. Once deployed, the small sensor nodes are usually inaccessible to the user, and thus replacement of the energy source is not feasible. Hence, energy efficiency is a key design issue that needs to be enhanced in order to improve the life span of the network. In BCDCP, all sensors send data from CH (Cluster Head) and then to BS (Base Station). BCDCP works well in small-scale network but in large scale network it is not appropriated since it uses much energy for long distance wireless communication. We propose a routing protocol - Triangular Clustering Routing Protocol (TCRP) - to prolong network life time through the balanced energy consumption. TCRP selects cluster head of triangular shape. The sensor field is divided into energy level and in every level we choose one node as a gate node. This gate node collects data and sends it to the leader node. Finally the leader node sends the aggregated data to the BS. We show TCRP outperforms BCDCP with several experiments.

Across-wind excitation mechanism for interference of twin tall buildings in tandem arrangement

  • Zu, G.B.;Lam, K.M.
    • Wind and Structures
    • /
    • v.26 no.6
    • /
    • pp.397-413
    • /
    • 2018
  • Excitation mechanism of interference effect between two tall buildings is investigated with wind tunnel experiments. Synchronized building surface pressure and flow field measurements by particle image velocimetry (PIV) are conducted to explore the relationship between the disturbed wind flow field and the consequent wind load modification for twin buildings in tandem. This reveals evident excitation mechanisms for the fluctuating across-wind loads on the buildings. For small distance (X/D < 3) between two buildings, the disturbed flow pattern of impaired vortex shedding is observed and the fluctuating across-wind load on the downstream building decreases. For larger distance ($X/D{\geq}3$), strong correlation between the across-wind load of the downstream building and the oscillation of the wake of the upstream building is found. By further analysis with conditional sampling and phase-averaged techniques, the coherent flow structures in the building gap are clearly observed and the wake oscillation of the upstream building is confirmed to be the reason of the magnified across-wind force on the downstream building. For efficient PIV measurement, the experiments use a square-section high-rise building model with geometry scale smaller than the usual value. Interference factors for all three components of wind loads on the building models being surrounded by another identical building with various configurations are measured and compared with those from previous studies made at large geometry scale. The results support that for interference effect between buildings with sharp corners, the length scale effect plays a minor role provided that the minimum Reynolds number requirement is met.

The Composition and Emission Characteristics of VOCs from Major Waste Landfill Sites in Korea (전국 주요 쓰레기매립장 지역에 대한 VOC 성분의 조성과 배출특성에 대한 연구)

  • Kim, Ki-Hyun;Choi, Ye-Jin;SunWoo, Young
    • Journal of Environmental Policy
    • /
    • v.4 no.1
    • /
    • pp.69-91
    • /
    • 2005
  • In order to accurately evaluate the distribution and emission characteristics of volatile organic compounds(VOCs) produced in the landfill environment, we conducted a series of field campaign to measure VOC emissions from a total of eight landfill sites located all across the Korean Peninsula. During the field measurements made from Sept. 2000 to Dec. 2004, we investigated VOC emission characteristics from 1 large scale, 5 mid scale, and 2 small scale landfill sites. The results from our 4-years study is used to provide valuable information for the management of landfill facilities in Korea. If annual emission rates of VOC are compared in terms of toluene, the magnitude of its emission differed between the closed and active landfills. Whereas closed landfills show emission rates from a few tens to 500g/yr, those of active ones were recorded as 1,000 to 40,000g/yr.

  • PDF

Application and First Evaluation of the Operational RAMS Model for the Dispersion Forecast of Hazardous Chemicals - Validation of the Operational Wind Field Generation System in CARIS (유해화학물질 대기확산 예측을 위한 RAMS 기상모델의 적용 및 평가 - CARIS의 바람장 모델 검증)

  • Kim, C.H.;Na, J.G.;Park, C.J.;Park, J.H.;Im, C.S.;Yoon, E.;Kim, M.S.;Park, C.H.;Kim, Y.J.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.5
    • /
    • pp.595-610
    • /
    • 2003
  • The statistical indexes such as RMSE (Root Mean Square Error), Mean Bias error, and IOA (Index of agreement) are used to evaluate 3 Dimensional wind and temperature fields predicted by operational meteorological model RAMS (Regional Atmospheric Meteorological System) implemented in CARIS (Chemical Accident Response Information System) for the dispersion forecast of hazardous chemicals in case of the chemical accidents in Korea. The operational atmospheric model, RAMS in CARIS are designed to use GDAPS, GTS, and AWS meteorological data obtained from KMA (Korean Meteorological Administration) for the generation of 3-dimensional initial meteorological fields. The predicted meteorological variables such as wind speed, wind direction, temperature, and precipitation amount, during 19 ∼ 23, August 2002, are extracted at the nearest grid point to the meteorological monitoring sites, and validated against the observations located over the Korean peninsula. The results show that Mean bias and Root Mean Square Error are 0.9 (m/s), 1.85 (m/s) for wind speed at 10 m above the ground, respectively, and 1.45 ($^{\circ}C$), 2.82 ($^{\circ}C$) for surface temperature. Of particular interest is the distribution of forecasting error predicted by RAMS with respect to the altitude; relatively smaller error is found in the near-surface atmosphere for wind and temperature fields, while it grows larger as the altitude increases. Overall, some of the overpredictions in comparisons with the observations are detected for wind and temperature fields, whereas relatively small errors are found in the near-surface atmosphere. This discrepancies are partly attributed to the oversimplified spacing of soil, soil contents and initial temperature fields, suggesting some improvement could probably be gained if the sub-grid scale nature of moisture and temperature fields was taken into account. However, IOA values for the wind field (0.62) as well as temperature field (0.78) is greater than the 'good' value criteria (> 0.5) implied by other studies. The good value of IOA along with relatively small wind field error in the near surface atmosphere implies that, on the basis of current meteorological data for initial fields, RAMS has good potentials to be used as a operational meteorological model in predicting the urban or local scale 3-dimensional wind fields for the dispersion forecast in association with hazardous chemical releases in Korea.

Wind-sand coupling movement induced by strong typhoon and its influences on aerodynamic force distribution of the wind turbine

  • Ke, Shitang;Dong, Yifan;Zhu, Rongkuan;Wang, Tongguang
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.433-450
    • /
    • 2020
  • The strong turbulence characteristic of typhoon not only will significantly change flow field characteristics surrounding the large-scale wind turbine and aerodynamic force distribution on surface, but also may cause morphological evolution of coast dune and thereby form sand storms. A 5MW horizontal-axis wind turbine in a wind power plant of southeastern coastal areas in China was chosen to investigate the distribution law of additional loads caused by wind-sand coupling movement of coast dune at landing of strong typhoons. Firstly, a mesoscale Weather Research and Forecasting (WRF) mode was introduced in for high spatial resolution simulation of typhoon "Megi". Wind speed profile on the boundary layer of typhoon was gained through fitting based on nonlinear least squares and then it was integrated into the user-defined function (UDF) as an entry condition of small-scaled CFD numerical simulation. On this basis, a synchronous iterative modeling of wind field and sand particle combination was carried out by using a continuous phase and discrete phase. Influencing laws of typhoon and normal wind on moving characteristics of sand particles, equivalent pressure distribution mode of structural surface and characteristics of lift resistance coefficient were compared. Results demonstrated that: Compared with normal wind, mesoscale typhoon intensifies the 3D aerodynamic distribution mode on structural surface of wind turbine significantly. Different from wind loads, sand loads mainly impact on 30° ranges at two sides of the lower windward region on the tower. The ratio between sand loads and wind load reaches 3.937% and the maximum sand pressure coefficient is 0.09. The coupling impact effect of strong typhoon and large sand particles is more significant, in which the resistance coefficient of tower is increased by 9.80% to the maximum extent. The maximum resistance coefficient in typhoon field is 13.79% higher than that in the normal wind field.

Study on Application Plan of Forest Spatial Informaion Based on Unmanned Aerial Vehicle to Improve Environmental Impact Assessment (환경영향평가 개선을 위한 무인항공기 기반의 산림공간정보 활용 방안 연구)

  • Sung, Hyun-Chan;Zhu, Yong-Yan;Jeon, Seong-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.6
    • /
    • pp.63-76
    • /
    • 2019
  • UAVs are unmanned, autonomous or remotely piloted aircraft. As UAVs become smaller, lighter and more economical, their applications continue to expand. Researches on UAVs in the field of remote sensing show development methods and purposes similar to those on satellite images, and they are widely used in studies such as 3D image composition and monitoring. In the field of environmental impact assessment(EIA), satellite information and data are mainly used. However, only low-resolution images covering long distances and large-scale data allowing for rough examination are being provided, so their uses are seriously limited. Therefore, in this paper, we construct spatial information of forest area by using unmanned aerial vehicle and seek efficient utilization and policy improvement in the field of environmental impact assessment. As a result, high-resolution images and data from UAVs can be used to identify the location status of SEIA, EIA, and small scale EIA project plans and to evaluate detailed environmental impact analysis. In addition, when provided together with infographics about Post-environmental impact investigation, it was confirmed that the possibility of periodic spatial information construction and evaluation can be used throughout the entire project contents and project post-process.In order to provide sophisticated infographics for the EIA, drone photography and GCP surveying methods were derived.The results of this study will be used as a basis for improving high-resolution monitoring and environmental impact assessment in the forest sector.

Practical Use of Vacuum Press for Curvature Formation in Wooden Furniture Design (목 가구 디자인에서 곡면 성형을 위한 베큠프레스의 활용)

  • Wee, Han-Lim
    • Archives of design research
    • /
    • v.18 no.4 s.62
    • /
    • pp.155-164
    • /
    • 2005
  • In contrast with product design field, some designers who work in furniture field tend to do their own studio works as well as typical designing part. Especially in the small furniture studios for the limited quantity batch production, custom made or handmade craft furniture which is finished with high quality, the propensity for their own production is more obvious than in the big furniture companies in this case. In this kind of small-scale furniture studios, they have more chance to create the various formative works and 'curved shape' is one of the most important elements to form creative pieces. Except by caning, it is very difficult to make curved wooden shape because of own characteristic of wood. Therefore, the special techniques of bending wood are essential to formative furniture production and vacuum press system is introduced as a main subject for the bending wood method in this study. Especially for the designers who work as makers as well at the small furniture studios, the value of vacuum press system on efficiency and productivity of work was sought by testing and improving the method of wood bending techniques. According to this practical searching, ideally sufficient condition on vacuum pressing work was founded as a result on this study.

  • PDF

Design Considerations of 2-pole Synchronous Superconducting Rotating Machine (2극 초전도 동기기 설계법 고찰)

  • Baik, S.K.;Sohn, M.H.;Lee, E.Y.;Kwon, Y.K.;Ryu, K.S.;Jo, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.865-867
    • /
    • 2001
  • Generally large synchronous rotating machines with 2 poles have more merits than the others with more than 2 poles Superconducting synchronous rotating machines also have the same tendency, but they have different structure from conventional ones because of no magnetic core inside of the rotor. As the result, design approaches of the superconducting field coils are also different, which would be classified into 2 types according to their coil shapes. The first one is race-track type and the other is saddle type Race-track type machines have almost the same structure with conventional salient pole generators which are being used as largely small scale machines with more than 2 poles. On the other hand saddle type machines correspond to conventional cylindrical generators with 2 poles used for large turbine system in power plants. In this paper several types of superconducting field coils are introduced for 2 pole superconducting machine design and then the feasibility of each type is considered. Moreover, based on the consideration. 1MVA superconducting generator(S.G.) with saddle type field coil is designed electromagnetically.

  • PDF

Disturbance Effects of Field $V_S$ Probe (현장 전단파 속도 프로브의 교란효과)

  • Yoon, Hyung-Koo;Lee, Chang-Ho;Lee, Woo-Jin;Lee, Jong-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.605-612
    • /
    • 2008
  • The shear wave velocity ($V_s$) has been commonly used to evaluate the dynamic properties of soil. The field $V_s$ probe (FVP) was already developed to assess the shear stiffness of a soft clay. The objective of this study is to investigate the disturbance effects of the FVP due to the penetration. The laboratory tests are conducted in a large-scale consolidometer (calibration chamber). The reconstituted clay is mixed at the water content of 110% using a slurry mixer. The FVP and down-hole test are carried out every 1cm interval to compare the data. In addition, two square rods with transducers are also implemented to get the reference value. The shear waves evaluated by the FVP, dow-hole tests, and reference rods are closely matched. This study suggests that the disturbance effect of the FVP due to the penetration into the soft clay soils is small enough and the $V_s$ evaluated by the FVP reflects well the in-situ characteristics. Furthermore, the combination of the FVP and down-hole test shows the possibility of hybrid equipment.

  • PDF

Stability and Dynamics of a Magnetic Field Producing the M6.6 Class Solar Flare in NOAA Active Region 11158

  • Kang, Jihye;Inoue, Satoshi;Magara, Tetsuya
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.97.2-97.2
    • /
    • 2014
  • In this paper, we study the stability and dynamics of a magnetic field producing the M6.6 class solar flare taking place in NOAA active region (AR) 11158 on 2011 February 13th. Toriumi et. al. (2013) recently suggest that a fine scale magnetic structure on the photosphere gives a major possibility to produce the M6.6 class flare. On the other hand, they don't discuss the torus instability as a plausible mechanism even though Zhao et. al. (2014) and Janvier et. al. (2014) suspect it as the trigger mechanism of X2.2 class flare taking place later in the same AR. We are the first to investigate the stability of a nonlinear force-free field (NLFFF) prior to the M6.6 class flare against the torus instability by using analytical and numerical approaches. Consequently, we found that our NLFFF is quite stable against small perturbation. This result supports that the flare is triggered by the photospheric motion suggested by Toriumi et. al. (2013). We further perform another MHD simulation with an anomalous resistivity using the NLFFF as an initial condition. As a result, we found the eruption of strongly twisted lines. We compare our simulation results with observations and discuss relevant dynamics in detail.

  • PDF