• Title/Summary/Keyword: Small-Disturbance

Search Result 329, Processing Time 0.027 seconds

Depth Control of Underwater Flight Vehicle Using Fuzzy Sliding Mode Controller and Neural Network Interpolator (퍼지 슬라이딩 모드 제어기 및 신경망 보간기를 이용한 Underwater Flight Vehicle의 심도 제어)

  • Kim, Hyun-Sik;Park, Jin-Hyun;Choi, Young-Kiu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.8
    • /
    • pp.367-375
    • /
    • 2001
  • In Underwater Flight Vehicle depth control system, the followings must be required. First, it needs robust performance which can get over modeling error, parameter variation and disturbance. Second, it needs accurate performance which have small overshoot phenomenon and steady state error to avoid colliding with ground surface or obstacles. Third, it needs continuous control input to reduce the acoustic noise and propulsion energy consumption. Finally, it needs interpolation method which can sole the speed dependency problem of controller parameters. To solve these problems, we propose a depth control method using Fuzzy Sliding Mode Controller with feedforward control-plane bias term and Neural Network Interpolator. Simulation results show the proposed method has robust and accurate control performance by the continuous control input and has no speed dependency problem.

  • PDF

Adaptive High Precision Control of Dynamic System Using Friction Compensation Schemes (마찰력 보상 기법을 이용한 동적 시스템의 고 정밀 적응제어)

  • Jeon, Buyng-Gyoon;Jeon, Gi-Joon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.10
    • /
    • pp.555-562
    • /
    • 2000
  • We propose an adaptive nonlinear control algorithm for compensation of the stick-slip friction in a dynamic system. The friction force and mass of the system are estimated and compensated by adaptive control law. Especially, as the nonlinear control input in a small tracking error zone is enlarged by the nonlinear function, the steady state error is significantly reduced. The proposed algorithm is a direct adaptive control method based on the Laypunov stability theory, and its convergence is guaranteed under the bounded noise or torque disturbance. We verified the performance of the proposed algorithm by computer simulation on one-DOF mechanical system with friction.

  • PDF

Disturbance in the Daytime Midlatitude Upper F Region Associated with a Medium Scale Electrodynamic Vortex Motion of Plasma

  • Hegai, Valery V.;Kim, Vitaly P.
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.207-210
    • /
    • 2016
  • Under the assumption of the presence of a medium-scale E × B drift vortex of plasma in the daytime midlatitude F region, and using a simplified ionospheric model, we demonstrate that the E × B drift produces noticeable perturbations in the horizontal distribution of the plasma density in the upper F region. The pattern of ion density perturbations shows two separate medium scale domains of enhanced and reduced ion density with respect to the background. The E × B drift does not produce multiple small-scale ion density irregularities through plasma mixing because of the suppression effect of the field-aligned ambipolar plasma diffusion.

A New Approach to the Coherency-Based Dynamic Equivalence of Power Plants (Coherent 발전소들의 새로운 동태등가화 기법)

  • Park, Young-Moon;Jung, Jung-Won;Choi, Myeon-Song
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.162-166
    • /
    • 1990
  • This paper proposes a new method of the state reduction in dynamic equations of generators in large electric power system stability analysis. This method assumes study groups whose state trajectories we are interested in, coherency groups whose state trajectories are similar to the other state trajectories of generators in the same coherency group by a certain disturbance. By the weighted sum or the other method, the states of generators in one coherency group can be reduced to the equivalent states of an equivalent generator. This method is shown to be highly efficient in reducing the number of states with small error by the result of case study presented latter part of this paper.

  • PDF

Nonlinear Aeroelastic Analysis of a High-Aspect-Ratio Wing with Large Deflection Effects

  • Kim, Kyung-Seok;Lim, In-Gyu;Lee , In;Yoo, Jae-Han
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.99-105
    • /
    • 2006
  • In this study, nonlinear static and dynamic aeroelastic analyses for a high-aspect-ratio wing have been performed. To achieve these aims, the transonic small disturbance (TSD) theory for the aerodynamic analysis and the large deflection beam theory considering a geometrical nonlinearity for the structural analysis are applied, respectively. For the coupling between fluid and structure, the transformation of a displacement from the structural mesh to the aerodynamic grid is performed by a shape function which is used for the finite element and the inverse transformation of force by work equivalent load method. To validate the current method, the present analysis results of a high-aspect-ratio wing are compared with the experimental results. Static deformations in the vertical and torsional directions caused by an angle of attack and gravity loading are compared with experimental results. Also, static and dynamic aeroelastic characteristics are investigated. The comparisons of the flutter speed and frequency between a linear and nonlinear analysis are presented.

Time-Delay Control for Integrated Missile Guidance and Control

  • Park, Bong-Gyun;Kim, Tae-Hun;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.260-265
    • /
    • 2011
  • In this paper, integrated missile guidance and control systems using time-delay control (TDC) are developed. The next generation missile requires that an interceptor hits the target, maneuvering with small miss-distances, and has lower weight to reduce costs. This is possible if the synergism existing between the guidance and control subsystems is exploited by the integrated controller. The TDC law is a robust control technique for nonlinear systems, and it has a very simple structure. The feature of TDC is to directly estimate the unknown dynamics and the unexpected disturbance using one-step time-delay. To investigate the performance of the integrated controller, numerical simulations are performed as the maneuver of the target. The results show that the integrated guidance and control system has a good performance.

Transonic Aeroelastic Analyses of Wings Considering UViscous and Thickness Effects

  • Kim, Jong-Yun;Kim, Kyung-Seok;Lee, In
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.34-40
    • /
    • 2008
  • The aeroelastic analyses for several wing models were performed using the transonic small-disturbance (TSD) equation, which is very efficient, to consider the aerodynamic nonlinearities in the transonic region. For more accurate aerodynamic analysis of airfoil and wing models with shock waves, the viscous equations based on the Green's lag-entrainment equation of boundary-layer effects were coupled with the TSD equation in the transonic region. Finally the aeroelastic characteristics of wing models were investigated through comparisons of the aeroelastic analysis results for wing models considering the change of a thickness of the airfoil section. Moreover, the results of the aeroelastic analysis using the coupled TSD equation with the viscous equations were compared with those using the TSD equation for several wing models.

Real-Time Monitoring and Warning System for Slope Movements Using FBG Sensor. (광섬유격자 센서를 활용한 사면거동 실시간 안전 진단 시스템)

  • 장기태;정경선;김성환;박권제;이원효;김경태;강창국;홍성진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11b
    • /
    • pp.60-76
    • /
    • 2000
  • Early detection in real-time response of slope movements ensures tremendous saving of lives and repair costs from catastrophic disaster Therefore, it is essential to constantly monitor the performance and integrity of slope-stabilizing structures such as Rock bolt, Nail and Pile during or after installation. We developed a novel monitoring system using Fiber Bragg Grating (FBG)sensor. It's advantages are highly sensitivity, small dimension and electro-magnetic immunity. capability of multiplexing, system integrity, remote sensing - these serve real-time health monitoring of the structures. Real-time strain measurement by the signal processing program is shown graphically and it gives a warning sound when the monitored strain state exceeds a given threshold level so that any sign of abnormal disturbance on the spot can be easily perceived.

  • PDF

Genetic Structure in Korean Populations of Hosta capitata (Liliaceae)

  • Chung, Myong-Gi
    • Journal of Plant Biology
    • /
    • v.37 no.3
    • /
    • pp.277-284
    • /
    • 1994
  • I investigated levels of genetic diversity, population genetic structure, and gene flow in Hostacapitata, a herbaceous perennial native to South Korea and southwestern Japan. Starch gel electrophoresis was conducted on leaves collected from 310 plants in 19 Korean populations. Twenty-two of 25 putative loci examined were polymorphic in at least one populatin and the mean number of alleles per locus was 1.65. In addition, mean expected heterozygosity within populations (Hep=0.153) was higher than average values for species with similar life history traits. Significant differences in allele frequency were detected between populations at all loci (P<0.01), and slightly over 30% of the genetic variation was found among populatins (GST=0.308). Indirect estimates of the number of migrants per generation (Nm) (0.506, calculated from GST; 0.852, calculated from the mean frequency of ten private alleles) indicate that gene flow is restricted among the isolated Korean populations of H. capitata. Factors contributing to the high levels of genetic differentiation among populations of H. capitata include small and discrete populations, human disturbance, and low frequencies of pollinator foraging behavior.

  • PDF

Comparison Study of Sound Transmission Loss in High Speed Train

  • Kim, Tae-Min;Kim, Jeung-Tae
    • International Journal of Railway
    • /
    • v.4 no.1
    • /
    • pp.19-27
    • /
    • 2011
  • Many studies for improving the railway vehicle's performance and comfort such as speed, weight and noise are currently in progress. Improving the structural characteristics of the vehicle for greater noise insulation is considered important for reducing disturbance due to noise, but measuring transmission loss entails large costs. This study explores an alternative method for estimating and measuring the railway vehicle's transmission loss that involves on applying the numerical analysis coupled with scaled reverberation chamber measurement. The transmission loss measurement using scaled reverberation chamber was performed after the compensation value was found through 1mm thickness(1t) specimen. For numerical analysis, a commercially available acoustics solver VA ONE was used. The proposed method is found to lead to transmission loss measurement comparable to the measurements based on large-scale reverberation chamber. Thus, it can be argued that a reliable method has been developed for measuring railway vehicle's transmission loss.