• Title/Summary/Keyword: Small unmanned aerial vehicle

Search Result 137, Processing Time 0.025 seconds

Minimum Separation Distance Calculation for Small Unmanned Aerial Vehicles using Flight Simulation (비행 시뮬레이션을 이용한 소형 무인항공기의 최소 분리 거리 산출)

  • Junyoung Han
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.15-20
    • /
    • 2024
  • The utilization of small unmanned aerial vehicles (UAVs) has expanded into both military and civilian domains, increasing the necessity for research to ensure operational safety and the efficient utilization of airspace. In this study, the calculation of minimum separation distances for the safe operation of small UAVs at low altitudes was conducted. The determination of minimum separation distances requires a comprehensive analysis of the total system errors associated with small UAVs, necessitating sensitivity analysis to identify key factors contributing to flight technology errors. Flight data for small UAVs were acquired by integrating the control system of an actual small UAV with a flight simulation program. Based on this data, operational scenarios for small UAVs were established, and the minimum separation distances for each scenario were calculated. This research contributes to proposing methods for utilizing calculated minimum separation distances as crucial parameters for ensuring the safe operation of small unmanned aerial vehicles in real-world scenarios.

Development and application of a technique for detecting beach litter using a Micro-Unmanned Aerial Vehicle

  • Jang, Seon Woong;Kim, Dae Hyun;Chung, Yong Hyun;Seong, Ki Taek;Yoon, Hong-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.3
    • /
    • pp.351-366
    • /
    • 2014
  • The aim of this study was to develop software for beach litter detection that includes a Graphical User Interface (GUI) and uses images taken by a micro-unmanned aerial vehicle. Videos were taken over Doomo pebble beach, Sogye pebble beach, and Heungnam sand beach on the northeast coast of Geojedo (Geoje Island), Korea. Still images of actual beach litter were obtained from the videos. The image processing involved preprocessing, morphological image processing, and image recognition. Comparison with still images showing beach litter demonstrated that the software could generally detect litter larger than 50 cm in size such as Styrofoam buoys and circular fish traps (excluding small pixel-size ropes). Combining the proposed method with the conventional surveying approach is expected to enhance the accuracy of beach litter detection. The new technique will also aid in predicting the amount of beach litter generated along coastlines, which is currently difficult to monitor.

Experimental Evaluation of Unmanned Aerial Vehicle System Software Based on the TMO Model

  • Park, Han-Sol;Kim, Doo-Hyun;Kim, Jung-Guk;Chang, Chun-Hyon
    • Journal of Computing Science and Engineering
    • /
    • v.2 no.4
    • /
    • pp.357-374
    • /
    • 2008
  • Over the past few decades, a considerable number of studies have been conducted on the technologies to build an UAV (Unmanned Aerial Vehicle) control system. Today, focus in research has moved from a standalone control system towards a network-centric control system for multiple UAV systems. Enabling the design of such complex systems in easily understandable forms that are amenable to rigorous analysis is a highly desirable goal. In this paper, we discuss our experimental evaluation of the Time-triggered Message-triggered Object (TMO) structuring scheme in the design of the UAV control system. The TMO scheme enables high-level structuring together with design-time guaranteeing of accurate timings of various critical control actions with significantly smaller efforts than those required when using lower-level structuring schemes based on direct programming of threads, UDP invocations, etc. Our system was validated by use of environment simulator developed based on an open source flight simulator named FlightGear. The TMO-structured UAV control software running on a small computing platform was easily connected to a simulator of the surroundings of the control system, i.e., the rest of the UAV and the flight environment. Positive experiences in both the TMO-structured design and the validation are discussed along with potentials for future expansion in this paper.

Design of STM32-based Quadrotor UAV Control System

  • Haocong, Cai;Zhigang, Wu;Min, Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.353-368
    • /
    • 2023
  • The four wing unmanned aerial vehicle owns the characteristics of small size, light weight, convenient operation and well stability. But it is easily disturbed by external environmental factors during flight with these disadvantages of short endurance and poor attitude solving ability. For solving these problems, a microprocessor based on STM32 chip is designed and the overall development is completed by the resources such as built-in timer and multi-function mode general-purpose input/output provided by the master micro controller unit, together with radio receiver, attitude meter, barometer, electronic speed control and other devices. The unmanned aerial vehicle can be remotely controlled and send radio waves to its corresponding receiver, control the analog level change of its corresponding channel pins. The master control chip can analyze and process the data to send multiple sets pulse signals of pulse width modulation to each electronic speed control. Then the electronic speed control will transform different pulse signals into different sizes of current value to drive the motor located in each direction of the frame to generate different rotational speed and generate lift force. To control the body of the unmanned aerial vehicle, so as to achieve the operator's requirements for attitude control, the PID controller based on Kalman filter is used to achieve quick response time and control accuracy. Test results show that the design is feasible.

Control of Small Scale Rotary Wing Unmanned Aerial Vehicle (R-UAV) Using Backstepping.

  • Kannan, Somasundar;Lian, Bao-Hua;Hwang, Tae-Won;Bang, Hyo-Choong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1005-1007
    • /
    • 2005
  • A Nonlinear approach to control of Small Scale Rotary Wing Unmanned Aerial Vehicle (R-UAV) is presented. Using Backstepping, a globally stabilizing control law is derived. We derive backstepping control law for angle of attack and sideslip control. The inherent nonlinear nature of the system are considered here which helps in naturally stabilizing without extensive external effort. Thus, the resulting control law is much simpler than if the feedback linearization had been used.

  • PDF

Ku-Band RF Transceiver System Design for UAV Line-Of-Sight Datalink (무인항공기 가시선 데이터링크 Ku 대역 RF 송수신 시스템 설계)

  • Choi, Jaewon;Kim, Jihoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.46-53
    • /
    • 2014
  • In this paper, ku-band RF transceiver system is designed for the unmanned aerial vehicle(UAV) line-of-sight(LOS) datalink. The RF transceiver system is consisted of the transmitting and receiving unit, RF front-end unit, and high power amplification unit. The transmitting and receiving unit has the functions of frequency up/down converting and channel changing. The RF front-end unit has the functions of transmitting and receiving signal duplexing, antenna selection, small signal amplification, and frequency filtering excluding the receiving signal. The high power amplification unit has the functions of ku-band power amplification and transmitting power variation(High/Middle/Low/Mute). The frequency up/down converting of transmitting and receiving unit is designed by using the superheterodyne method. The RF transceiver system is designed to obtain the broadband and high linearity properties for the reliable transmission and reception of high data-rate and high speed data. Also, the channel changing function is designed to use selectively the frequency as the operation environment of UAV.

CFD-based Thrust Analysis of Unmanned Aerial Vehicle in Hover Mode: Effects of Single Rotor Blade Shape (무인비행체 블레이드 형상 변화에 따른 단일로터의 제자리 비행 추력성능 분석)

  • Yun, Jae Hyun;Choi, Ha-Young;Lee, Jongsoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.513-520
    • /
    • 2014
  • An unmanned aerial vehicle (UAV) should be designed to be as small and lightweight as possible to optimize the efficiency of changing the blade shape to enhance the aerodynamic performance, such as the thrust and power. In this study, a computational fluid dynamics (CFD) simulation of an unmanned multi-rotor aerial vehicle in hover mode was performed to explore the thrust performance in terms of the blade rotational speed and blade shape parameters (i.e., taper ratio and twist angle). The commercial ADINA-CFD program was used to generate the CFD data, and the results were compared with those obtained from blade element theory (BET). The results showed that changes in the blade shape clearly affect the aerodynamic thrust of a UAV rotor blade.

A Flight Control System design for an Unmanned Helicopter

  • Park, Soo-Hong;Kim, Jong-Kwon;Jang, Cheol-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1375-1379
    • /
    • 2004
  • Unmanned Helicopter has several abilities such as vertical Take off, hovering, low speed flight at low altitude. Such vehicles are becoming popular in actual applications such as search and rescue, aerial reconnaissance and surveillance. These vehicles also used under risky environments without threatening the life of a pilot. Since a small aerial vehicle is very sensitive to environmental conditions, it is generally known that the flight control is very difficult problems. In this paper, a flight control system was designed for an unmanned helicopter. This paper was concentrated on describing the mechanical design, electronic equipments and their interconnections for acquiring autonomous flight. The design methodologies and performance of the helicopter were illustrated and verified with a linearized equation of motion. The LQG based estimator and controller was designed and tested for this unmanned helicopter.

  • PDF

Recent R&D Trends of Anti-Drone Technologies (안티 드론 기술 동향)

  • Choi, S.H.;Chae, J.S.;Cha, J.H.;Ahn, J.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.3
    • /
    • pp.78-88
    • /
    • 2018
  • As the unmanned aerial vehicle industry and its related technologies grow each year, the number of abuse cases caused by drones is increasing. In addition to the invasion of privacy caused by indiscriminate photography, terrorism using unmanned aerial vehicles, which have a low detection probability, high location accuracy, and the capability of targeting people or places, as well as carrying chemicals, radiation materials, and small bombs, is becoming a significant problem around the world. Accordingly, many companies are developing anti-drone solutions that consist of various technologies such as radar, EO/IR cameras, and RF jammers to detect and disable unmanned aerial vehicles. This article briefly introduces the recent R&D trends and technical levels of anti-drone technologies.

A Study on Fault Tolerance System for Flight Control Computer and Memory of Small Drones (소형 드론용 비행 제어기 및 메모리를 위한 고장 감내 시스템 연구)

  • Lee, Jeongdu;Cho, Doosan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.1
    • /
    • pp.425-431
    • /
    • 2020
  • The market for small unmanned aerial vehicles (SUAVs) is growing rapidly as technology advances and makes it possible to use them in various fields. However, due to the rapid increase in small drones, breakdowns, collisions and falls are also increasing year by year, and technologies for reducing accident and securing safety are being actively researched. In particular, the application of a fault tolerance system to cope with unexpected failures during flight is essential. According to data released by the US Department of Defense, accidents caused by errors in flight control computers account for about 28% of all accidents. This paper describes the proposal of flight control computer system's dual structure design to tolerate flight control system failure.