• 제목/요약/키워드: Small strain nonlinearity

검색결과 37건 처리시간 0.031초

자동차용 고무 Dust Cover의 거동에 관한 연구 (An Analysis of Rubber Dust-Cover for Automotive Parts)

  • 강태호;김인관;김영수
    • 한국CDE학회논문집
    • /
    • 제10권5호
    • /
    • pp.375-379
    • /
    • 2005
  • Durability of rubber dust cover in the ball joint for automotive suspension parts is analyzed by FEM and compared with experimental data. Upper open area of ball joint is sealed by dust cover for preventing outflow of the lubricating oil and intrusion of send, dust, water, etc. This rubber cover undergoes repeated loadings such as tension and compression while the car is running. Analysis about rubber material needs to consider every kinds of nonlinearities arise in finite element analysis, which are geometric nonlinearity due to large displacement and small strain, materially nonlinearity and nonlinear boundary condition such as contact. The deformation behavior of dust cover is analysed by using the commercial finite element program MARC. In the study, this program could solve these kinds of nonlinear analysis accurately. Finite element model of dust cover is considered as 3-dimensional half model based on 2-dimensional axisymmetric model. Material property of rubber is modeled by Ogden model and input data for calculation takes form uniaxial tension test of rubber specimen. The final object of the study is obtaining the design specification of dust covers and the result of analysis should be a useful data to design of rubber cover.

Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure

  • Arefi, M.;Rahimi, G.H.
    • Smart Structures and Systems
    • /
    • 제9권2호
    • /
    • pp.127-143
    • /
    • 2012
  • The present paper deals with the nonlinear analysis of the functionally graded piezoelectric (FGP) annular plate with two smart layers as sensor and actuator. The normal pressure is applied on the plate. The geometric nonlinearity is considered in the strain-displacement equations based on Von-Karman assumption. The problem is symmetric due to symmetric loading, boundary conditions and material properties. The radial and transverse displacements are supposed as two dominant components of displacement. The constitutive equations are derived for two sections of the plate, individually. Total energy of the system is evaluated for elastic solid and piezoelectric sections in terms of two components of displacement and electric potential. The response of the system can be obtained using minimization of the energy of system with respect to amplitude of displacements and electric potential. The distribution of all material properties is considered as power function along the thickness direction. Displacement-load and electric potential-load curves verify the nonlinearity nature of the problem. The response of the linear analysis is investigated and compared with those results obtained using the nonlinear analysis. This comparison justifies the necessity of a nonlinear analysis. The distribution of the displacements and electric potential in terms of non homogenous index indicates that these curves converge for small value of piezoelectric thickness with respect to elastic solid thickness.

316L 스테인리스강의 상온 반복 거동에 대한 수정 다층 모델의 적용성 검토 (Applicability Evaluation of Modified Overlay Model on the Cyclic Behavior of 316L Stainless Steel at Room Temperature)

  • 임재용;이순복
    • 대한기계학회논문집A
    • /
    • 제28권10호
    • /
    • pp.1603-1611
    • /
    • 2004
  • The validity of 'modified overlay model' to describe the cyclic behavior of annealed 316L stainless steel at room temperature was investigated. Material parameters(~f$_{i}$, m$_{i}$b, η, E) fur the model were obtained through constant strain amplitude test. The strain amplitude dependency of elastic limit and cyclic hardening, which were the characteristics of this model, were considered. Eight subelements were used to describe the nonlinearity of the hysteresis loops. The calculated hysteresis curve in each condition (0.5%, 0.7%, 0.9% train amplitude test) was very close to the experimental one. Two tests, incremental step test and 5-step test, ere performed to check the validity of 'modified overlay model'. The elastic limit was saturated to the one of the highest strain amplitudes of the block in the incremental step test, so it seemed to be Masing material at the stabilized block. Cyclic hardening was successfully described in the increasing sequence of the strain amplitude in 5-step test. But, the slight cyclic softening followed by higher strain amplitude would not be able to simulate by'modified overlay model'. However, the discrepancy induced was very small between the calculated hystereses and the experimental ones. In conclusion,'Modified overlay model'was proved to be appropriate in strain range of 0.35%~ 1.0%..0%.

Thermo-electro-elastic nonlinear stability analysis of viscoelastic double-piezo nanoplates under magnetic field

  • Ebrahimi, Farzad;Hosseini, S. Hamed S.;Selvamani, Rajendran
    • Structural Engineering and Mechanics
    • /
    • 제73권5호
    • /
    • pp.565-584
    • /
    • 2020
  • The nonlinear thermo-electro-elastic buckling behavior of viscoelastic nanoplates under magnetic field is investigated based on nonlocal elasticity theory. Employing nonlinear strain-displacement relations, the geometrical nonlinearity is modeled while governing equations are derived through Hamilton's principle and they are solved applying semi-analytical generalized differential quadrature (GDQ) method. Eringen's nonlocal elasticity theory considers the effect of small size, which enables the present model to become effective in the analysis and design of nano-sensors and nano actuators. Based on Kelvin-Voigt model, the influence of the viscoelastic coefficient is also discussed. It is demonstrated that the GDQ method has high precision and computational efficiency in the buckling analysis of viscoelastic nanoplates. The good agreement between the results of this article and those available in literature validated the presented approach. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as electric voltage, small scale effects, elastomeric medium, magnetic field, temperature effects, the viscidity and aspect ratio of the nanoplate on its nonlinear buckling characteristics. It is explicitly shown that the thermo-electro-elastic nonlinear buckling behavior of viscoelastic nanoplates is significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of viscoelastic nanoplates as fundamental elements in nanoelectromechanical systems.

Geometrically nonlinear elastic analysis of space trusses

  • Tin-Loi, F.;Xia, S.H.
    • Structural Engineering and Mechanics
    • /
    • 제7권4호
    • /
    • pp.345-360
    • /
    • 1999
  • A general framework for the nonlinear geometric analysis of elastic space trusses is presented. Both total Lagrangian and finite incremental formulations are derived from the three key ingredients of statics, kinematics and constitutive law. Particular features of the general methodology include the preservation of static-kinematic duality through the concept of fictitious forces and deformations, and an exact description for arbitrarily large displacements, albeit small strain, that can be specialized to any order of geometrical nonlinearity. As for the numerical algorithm, we consider specifically the finite incremental case and suggest the use of a conventional, simple and flexible arc-length based method. Numerical examples are presented to illustrate and validate the accuracy of the approach.

대규모 굴착공사에 따른 지중연속벽체의 변형특성(II) -수치해석- (Deformation Characteristics of Diaphragm Wall Induced by Deep Excavation(II) -Numerical Analysis-)

  • 김동준;이병철;김동수;양구승
    • 한국지반공학회논문집
    • /
    • 제17권4호
    • /
    • pp.107-115
    • /
    • 2001
  • 해성토층 위에 준설매립된 수도권 해안매립지역에서 원형의 대심도 굴착공사로 인하여 발생하는 지중연속벽의 수평변위를 예측하기 위하여 수치해석을 수행하였고, 이러한 수치해석결과와 현장측정값을 비교하여 각각의 수치해석방법의 적용성을 평가하였다. 수치해석법으로는 지반반력해석, 선형 유한요소법 그리고 비선형 유한요소법이 수행되었다. 각각의 방법들에서는 미소변형률에서의 지반거동특성인 비선형성과 굴착으로 인한 구속압감소효과를 고려한 경우와 고려하지 않은 경우에 대하여 수치해석을 수행하여 각각 그 결과들을 비교.분석하였다. 이러한 분석결과 미소변형률에서의 비선형성과 굴착으로 인한 구속압감소 효과를 고려한 비선형 유한요소해석법이 가장 정확하게 수평변위를 예측할 수 있는 방법임을 알 수 있었다.

  • PDF

유연매체의 거동해석: II. 공기의 영향을 고려한 해석 (Analysis of Flexible Media: II. Including Aerodynamic Effect)

  • 지중근;장용훈;박노철;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1335-1340
    • /
    • 2007
  • The media transport systems, such as printers, copy machines, facsimiles, ATMs, cameras, etc. have been widely used and being developed rapidly. In the development of those sheet-handling machineries, it is important to predict the static and dynamic behavior of the sheet with a high degree of reliability because the sheets are fed and stacked at such a high speed. Flexible media are very thin, light and flexible, so they behave in geometric nonlinearity with large displacement and large rotation but small strain. In the flexible media analysis, aerodynamic effect from the surrounding air must be included because any small force can make large deformation. In this paper, surrounding air was modeled by incompressible Navier-Stokes flow and an arbitrary Lagranigan-Eulerian(ALE) finite element method with automatic mesh-updating technique was formulated for large domain changes. In the numerical simulations, the results with consideration of the air fast decayed and converged into static results while the results without considering air oscillated continuously.

  • PDF

Analysis of Drawbead Process by Static-Explicit Finite Element Method

  • Jung, Dong-Won
    • Journal of Mechanical Science and Technology
    • /
    • 제16권12호
    • /
    • pp.1687-1692
    • /
    • 2002
  • The problem analyzed here is a sheet metal forming process which requires a drawbead. The drawbead provides the sheet metal enough tension to be deformed plastically along the punch face and consequently, ensures a proper shape of final products by fixing the sheet to the die. Therefore, the optimum design of drawbead is indispensable in obtaining the desired formability. A static-explicit finite element analysis is carried out to provide a perspective tool for designing the drawbead. The finite element formulation is constructed from static equilibrium equation and takes into account the boundary condition that involves a proper contact condition. The deformation behavior of sheet material is formulated by the elastic-plastic constitutive equation. The finite element formulation has been solved based on an existing method that is called the static-explicit method. The main features of the static-explicit method are first that there is no convergence problem. Second, the problem of contact and friction is easily solved by application of very small time interval. During the analysis of drawbead processes, the strain distribution and the drawing force on drawbead can be analyzed. And the effects of bead shape and number of beads on sheet forming processes were investigated. The results of the static explicit analysis of drawbead processes show no convergence problem and comparatively accurate results even though severe high geometric and contact-friction nonlinearity. Moreover, the computational results of a static-explicit finite element analysis can supply very valuable information for designing the drawbead process in which the defects of final sheet product can be removed.

Thermal buckling properties of zigzag single-walled carbon nanotubes using a refined nonlocal model

  • Semmah, Abdelwahed;Beg, O. Anwar;Mahmoud, S.R.;Heireche, Houari;Tounsi, Abdelouahed
    • Advances in materials Research
    • /
    • 제3권2호
    • /
    • pp.77-89
    • /
    • 2014
  • In the present article, the thermal buckling of zigzag single-walled carbon nanotubes (SWCNTs) is studied using a nonlocal refined shear deformation beam theory and Von-Karman geometric nonlinearity. The model developed simulates both small scale effects and higher-order variation of transverse shear strain through the depth of the nanobeam. Furthermore the present formulation also accommodates stress-free boundary conditions on the top and bottom surfaces of the nanobeam. A shear correction factor, therefore, is not required. The equivalent Young's modulus and shear modulus for zigzag SWCNTs are derived using an energy-equivalent model. The present study illustrates that the thermal buckling properties of SWCNTs are strongly dependent on the scale effect and additionally on the chirality of zigzag carbon nanotube. Some illustrative examples are also presented to verify the present formulation and solutions. Good agreement is observed.

A DQ nonlinear bending analysis of skew composite thin plates

  • Malekzadeh, P.
    • Structural Engineering and Mechanics
    • /
    • 제25권2호
    • /
    • pp.161-180
    • /
    • 2007
  • A first endeavor is made to exploit the differential quadrature method (DQM) as a simple, accurate, and computationally efficient numerical tool for the large deformation analysis of thin laminated composite skew plates, which has very strong singularity at the obtuse vertex. The geometrical nonlinearity is modeled by using Green's strain and von Karman assumption. A recently developed DQ methodology is used to exactly implement the multiple boundary conditions at the edges of skew plates, which is a major draw back of conventional DQM. Using oblique coordinate system and the DQ methodology, a mapping-DQ discretization rule is developed to simultaneously transform and discretize the equilibrium equations and the related boundary conditions. The effects of skew angle, aspect ratio and different types of boundary conditions on the convergence and accuracy of the presented method are studied. Comparing the results with the available results from other numerical or analytical methods, it is shown that accurate results are obtained even when using only small number of grid points. Finally, numerical results for large deflection behavior of antisymmetric cross ply skew plates with different geometrical parameters and boundary conditions are presented.