• 제목/요약/키워드: Small size end mill

검색결과 4건 처리시간 0.024초

요인 실험계획법 및 회귀분석을 이용한 소경 엔드밀의 공구수명에 대한 연구 (A Study on tool life in the high speed machining of small-size end mill by factorial design of experiments and regression model)

  • 임표;박상윤;양균의
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.993-996
    • /
    • 2005
  • High speed machining(HSM) technique is widely used in the appliance, automobile part and mold industries, which has many advantages such as good quality, low cost and rapid machining time. but it also has problems like tool break, smooth tool path, and so on. In particular, small size end mill is easy to break, so it must be changed before interrupting operation. Generally, the tool life of small size end mill is effected by the milling conditions whose evaluated parameters are spindle, feedrate, and width of cut. The experiments are carried out by full factorial design of experiments using and orthogonal array. This paper shows optimal combination and mathematical model for tool life, and the analysis of variance(ANOVA) is employed to analyze the main effects and the interactions of these milling parameters and the second-order polynomial regression model with three independent variables is estimated to predict tool life by multiple regression analysis.

  • PDF

요인 실험계획법 회귀분석을 이용한 소경 엔드밀의 공구수명에 대한 연구 (A Study on tool life in the high speed machining of small-size end mill by factorial design of experiments and regression model)

  • 임표;박상윤;양균의
    • 한국정밀공학회지
    • /
    • 제23권2호
    • /
    • pp.73-80
    • /
    • 2006
  • High speed machining(HSM) technique is widely used in the appliance, automobile part and mold industries, because it has many advantages such as good quality, low cost and rapid machining time. But it also has problems such as tool breakage, smooth tool path, and so on. In particular, small size end mill is easy to break, so it must be changed before interrupting operation. Generally, the tool life of small size end mill is affected by the milling conditions whose selected parameters are spindle speed, feedrate, and width of cut. The experiments were carried out by full factorial design of experiments using an orthogonal array. This paper shows optimal combination and mathematical model for tool life, Therefore, the analysis of variance(ANOVA) is employed to analyze the main effects and the interactions of these milling parameters and the second-order polynomial regression model with three independent variables is estimated to predict tool life by multiple regression analysis.

엔드밀 가공시 공구변형을 고려한 표면형성 해석 (Surface Generation in End Milling considering Tool Deflection)

  • 이상규
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.119-124
    • /
    • 1996
  • End milling operation is very important in machining precision components. Deterioration of surface roughness and surface geometry will cause more process for surface finishing. According to the feed rate and the cutting edge geometry, the cusp which is geometrically uncut surface is determined. To reduce the cost for dinishing operation after end milling, the cusp must be remaianed in small size as possible. Due to the cylindrical type of the end mill, tool deflection is one of the main problems in surface generation. The cutting resistance and the rigidity of the end mill will determine the size of tool deflection. One more important factor which deteriorate surface quality comes from the error in manufacturing end mills. Run-out of end mill which is the difference of the radius of each cutting edges will produce the difference of the cusp size in every rotation of end mill. These three major factors to the surface quality will be analized and the result will be compared with experimental ressult.

  • PDF

소경 공구를 이용한 고경도 패턴 금형의 고속 가공 (High speed machining of cavity pattern in prehardened mold using the small size tool)

  • 임표;장동규;이희관;양균의
    • 한국정밀공학회지
    • /
    • 제21권1호
    • /
    • pp.133-139
    • /
    • 2004
  • High speed machining (HSM) can reduce machining time with the high metal removal rate by high speed spindle and feedrate. This paper supports HSM technology using the small size tool with the optimal tool path generation and modification of tool change. The optimum tool path is generated to reduce cutting length of cavity pattern and change the cutting tool for preventing the tool breakage by wear. The tool path is modified with the experiment data of tool wear and breakage to support tool change on reasonable time. The result can contribute to HSM technology of high hardness materials using the small size end-mill.