• Title/Summary/Keyword: Small satellite

Search Result 764, Processing Time 0.028 seconds

Research Trends in KOMPSAT Series (다목적실용위성 시리즈 연구 동향)

  • Lee, Kwang-Jae;Oh, Kwan-Young;Chae, Tae-Byeong;Lee, Won-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_4
    • /
    • pp.1313-1318
    • /
    • 2019
  • The Korea Aerospace Research Institute (KARI) has developed and operated a total of three KOMPSAT series(K-3, 3A and 5). The main purpose of satellite development is to utilize data obtained from satellites. In other words, continuous efforts should be made to improve the accuracy of data processing and expand the application areas. This special issue introduces pre-processing and application technologies based on optic and Synthetic Aperture Radar (SAR) sensors of KOMPSAT series. It is believed that more systematic research and development will be needed as follow-up KOMPSAT series and small satellites are under development.

Space Physics Sensor on KOMPSAT-1

  • Min, Kyoung-Wook;Choi, Young-Wan;Shin, Young-Hoon;Lee, Jae-Jin;Lee, Dae-Hee;Kim, Jhoon
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.355-360
    • /
    • 1998
  • A small package of plasma instruments, Space Physics Sensor, will monitor the space environment and its effects on microelectronics in the low altitude region as it operates on board the KOMPSAT-1 from 1999 over the maximum of the solar cycle 23. The Space Physics Sensor (SPS) consists of two parts: the Ionospheric Measurement Sensor (IMS) and the High Energy Particle Detector (HEPD). IMS will make in situ Measurements of the thermal electron density and temperature, and is expected to provide a global map of the thermal electron characteristics and the variability according to the solar and geomagnetic activity in the high altitude ionosphere of the KOMPSAT-t orbit. HEPD will measure the fluxes of high energy protons and electrons, monitor the single event upsets caused by these energetic charged particles, and give the information of the total radiation dose received by the spacecraft. The continuous operation of these sensors, along with the ground measurements such as incoherent scatter radars, digital ionosondes and other spacecraft measurements, will enhance our understanding of this important region of practical use for the low earth orbit satellites.

  • PDF

Random Vibration Characteristics of a Whole Structure Composite Satellite Having Hybrid Composite Sandwich Panels (하이브리드 복합재 샌드위치 패널로 구성된 전구조 복합재 위성의 랜덤진동 특성 평가)

  • Cho, Hee-Keun;Rhee, Ju-Hun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.8
    • /
    • pp.798-805
    • /
    • 2010
  • Whole composite structure small class (150kg) satellite, STSAT-3, was initially developed in Korea. The structure does have aluminum frames that support the structure, and it is composed of only composite sandwich panels. A number of electronic boxes and mechanical apparatus will be shielded within the compartments built up by the composite panels. This study focused on the random vibration responses of the satellite. For this objective, vibration tests and analyses have been successfully performed with respect to STM (structure and thermal model) of the satellite. Additionally, through the experiment and theoretical analyses, the both results' accuracy was verified by comparison each other.

A Study on Coaxial-Structure Waveguide High-Order Mode Coupler of Ku-Band satellite tracking system for UAV (무인기용 Ku 대역 위성추적 시스템의 동축구조 도파관 고차모드 커플러에 대한 연구)

  • Lee, Jaemoon;Lim, Jaesung;Ga, Deukhyun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.93-99
    • /
    • 2016
  • In this paper, higher order coupler using small size waveguide which applicable for mobile Ku-band multimode monopulse satellite tracking antenna system, has been designed, implemented and tested. Proposed higher order mode coupler adopts a coaxial structure for low profile characteristic considering installation property to mobile satellite terminal system. In addition, by using proposed coupler, extracted tracking error signal pattern has measured and confirmed that required tracking accuracy is satisfied in desired frequency band. In the future, proposed coupler could utilize for multimode monopulse satellite tracking system for high tracking accuracy.

A Study on the Construction of Ground Test Segment for the Time Synchronization System Using the Geostationary Satellite (정지궤도 위성을 이용한 시각동기 지상시스템 시험장비 구축에 관한 연구)

  • Lee, Sang-Cherl;Kim, Bang-Yeop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.5
    • /
    • pp.104-108
    • /
    • 2004
  • The most of the CDMA mobile communication depends on the GPS for the time synchronization. Then, we must prepare alternative system against the unusable GPS like a unexpectable accident or strategic purpose by the USA government. In this study, we have constructed ground test segment for the time synchronization system using the geostationary satellite. In addition. we have designed, manufactured and tested the transmitting and receiving board to receive 1 PPS signal from atomic clock for transmitting stored data in buffer to satellite modem and to produce 1 PPS signal from satellite modem for measuring time delay.

Reliability Prediction of Satellite by Function Analysis (기능분석을 통한 인공위성의 신뢰도 예측)

  • Yoo, Ki-Hoon;Kim, Gi-Young;Ahn, Yeong-Gi;Cha, Dong-Won;Shin, Goo-Hwan;Kim, Dong-Guk;Chae, Jang-Soo;Jang, Joong-Soon
    • Journal of Applied Reliability
    • /
    • v.15 no.1
    • /
    • pp.44-51
    • /
    • 2015
  • In this study, we propose reliability prediction of a satellite by function analysis. To do so, the intended functions of the satellite are derived from using function structure block diagram, and defined as main, sub, and detailed functions. Furthermore, in order to generate function and reliability structure table, reliability model rule, duty cycle, and types of switch are assigned to the classified functions. This study also establishes reliability block diagram and mathematical reliability models to schematize the relationship among the functions. The reliability of the classified function is estimated by calculating the failure rate of parts comprising them. Finally, we apply the proposed method to a small satellite as a case study. The result shows that the reliability for the detailed function and the sub function as well as the main function could be predicted quantitatively and accurately by the proposed approach.

ITU-R Study on Frequency Sharing for Mobile Satellite Services (ITU-R의 이동위성업무 주파수 공유 연구 현황)

  • B.J. Ku;D.S. Oh
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.1
    • /
    • pp.55-64
    • /
    • 2023
  • Recently, preparations for 6G have led to the increasing interest in integrated or hybrid communication networks considering low-orbit satellite communication networks with terrestrial mobile communication networks. In addition, the demand for frequency allocation for new mobile services from low-orbit small satellites to provide global internet of things (IoT) services is increasing. The operation of such satellites and terrestrial mobile communication networks may inevitably cause interference in adjacent bands and the same band frequency between satellites and terrestrial systems. Focusing on the results of the recent ITU-R WP4C meeting, this study introduces the current status of frequency sharing and interference issues between satellites and terrestrial systems, and frequency allocation issues for new mobile satellite operations. Coexistence and compatibility studies with terrestrial IMT in L band and 2.6 GHz band, operated by Inmassat and India, respectively, and a new frequency allocation study (WRC-23 AI 1.18) are carried out to reflect satellite IoT demand. For the L band, technical requirements have been developed for emission from IMT devices at 1,492 MHz to 1,518 MHz to bands above 1,518 MHz. Related studies in the 2 GHz and 2.6 GHz bands are not discussed due to lack of contributions at the recent meeting. In particular, concerning the WRC-23 agenda 1.18 study on the new frequency allocation method of narrowband mobile satellite work in the Region 1 candidate band 2,010 MHz to 2,025 MHz, Region 2 candidate bands 1,695 MHz to 1,710 MHz, 3,300 MHz to 3,315 MHz, and 3,385 MHz to 3,400 MHz, ITU-R results show no new frequency allocation to narrow mobile satellite services. Given the expected various collaborations between satellites and the terrestrial component are in the future, interference issues between terrestrial IMT and mobile satellite services are similarly expected to continuously increase. Therefore, participation in related studies at ITU-R WP4C and active response to protect terrestrial IMT are necessary to protect domestic radio resources and secure additional frequencies reflecting satellite service use plans.

Non-explosive Low-shock Separation Device for small satellite (소형 위성용 비폭발식 저충격 분리장치)

  • Park, Hyun-Jun;Tak, Won-Jun;Han, Bum-Ku;Kwag, Dong-Gi;Hwang, Jai-Hyuk;Kim, Byung-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.5
    • /
    • pp.457-463
    • /
    • 2009
  • This paper describes the development of non-explosive separation(NES) device which can be equipped on a small satellite. It comprises mechanism itself and spring-type shape memory alloy(SMA) actuator. In order to design SMA actuator properly, the necessary actuation force is measured. Based on that result, SMA actuator is designed and fabricated. Finally, SMA actuator and the proposed mechanism are integrated. In order to evaluate performance of the developed NES, we carried out a response time test, preload test and shock level test. In near future, we expect to replace the imported NES device with the developed device.