• Title/Summary/Keyword: Small reactor

Search Result 607, Processing Time 0.025 seconds

Preliminary conceptual design of a small high-flux multi-purpose LBE cooled fast reactor

  • Xiong, Yangbin;Duan, Chengjie;Zeng, Qin;Ding, Peng;Song, Juqing;Zhou, Junjie;Xu, Jinggang;Yang, Jingchen;Li, Zhifeng
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3085-3094
    • /
    • 2022
  • The design concept of a Small High-flux Multipurpose LBE(Lead Bismuth Eutectic) cooled Fast Reactor (SHMLFR) was proposed in the paper. The primary cooling system of the reactor is forced circulation, and the fuel element form is arc-plate loaded high enrichment MOX fuel. The core is cylindrical with a flux trap set in the center of the core, which can be used as an irradiation channel. According to the requirements of the core physical design, a series of physical design criteria and constraints were given, and the steady and transient parameters of the reactor were calculated and analyzed. Regarding the thermal and hydraulic phenomena of the reactor, a simplified model was used to conduct a preliminary analysis of the fuel plates at special positions, and the temperature field distribution of the fuel plate with the highest power density under different coolant flow rates was simulated. The results show that the various parameters of SHMLFR meet the requirements and design criteria of the physical design of the core and the thermal design of the reactor. This implies that the conceptual design of SHMLFR is feasible.

Concept definition of Small-Medium Reactor Coolant System using System Engineering

  • Park, Jung Hwan;Jung, Jae Cheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.10 no.1
    • /
    • pp.33-41
    • /
    • 2014
  • New design concept of Reactor Coolant System (RCS) including a reactor assembly for the SMR is introduced in this work. An exploration of new type of reactor that is advanced from proposed SMRs is performed by using systems engineering approach. In this point of view project structured on three main phases; needs analysis (NA), concept exploration (CE), and concept definition (CD). Main objectives as an output of the CE stage are a small size, low cost, shortening the schedule, and enhancing safety. The SMRs usually have a small size requirement. In order to meet the size requirement and to achieve a productivity, in other words, easiness to manufacture, this paper suggests an integrated PWR design concept through researching predecessors. Although the integrated PWR concept provides many advantages, it has disadvantages that composite of maintenance and a low availability problem. Therefore, this paper comes up with a run-to-fail design concept based on modular design to address the maintenance problem and to maximize the availability of SMRs as well as to be compatible with the overall-SMRs including Barge Mounted(BM)type.

An advanced core design for a soluble-boron-free small modular reactor ATOM with centrally-shielded burnable absorber

  • Nguyen, Xuan Ha;Kim, ChiHyung;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.369-376
    • /
    • 2019
  • A complete solution for a soluble-boron-free (SBF) small modular reactor (SMR) is pursued with a new burnable absorber concept, namely centrally-shielded burnable absorber (CSBA). Neutronic flexibility of the CSBA design has been discussed with fuel assembly (FA) analyses. Major design parameters and goals of the SBF SMR are discussed in view of the reactor core design and three CSBA designs are introduced to achieve both a very low burnup reactivity swing (BRS) and minimal residual reactivity of the CSBA. It is demonstrated that the core achieves a long cycle length (~37 months) and high burnup (~30 GWd/tU), while the BRS is only about 1100 pcm and the radial power distribution is rather flat. This research also introduces a supplementary reactivity control mechanism using stainless steel as mechanical shim (MS) rod to obtain the criticality during normal operation. A further analysis is performed to investigate the local power peaking of the CSBA-loaded FA at MS-rodded condition. Moreover, a simple $B_4C$-based control rod arrangement is proposed to assure a sufficient shutdown margin even at the cold-zero-power condition. All calculations in this neutronic-thermal hydraulic coupled investigation of the 3D SBF SMR core are completed by a two-step Monte Carlo-diffusion hybrid methodology.

PILLAR: Integral test facility for LBE-cooled passive small modular reactor research and computational code benchmark

  • Shin, Yong-Hoon;Park, Jaeyeong;Hur, Jungho;Jeong, Seongjin;Hwang, Il Soon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3580-3596
    • /
    • 2021
  • An integral test facility, PILLAR, was commissioned, aiming to provide valuable experimental results which can be referenced by system and component designers and used for the performance demonstration of liquid-metal-cooled, passive small modular reactors (SMRs) toward their licensing. The setup was conceptualized by a scaling analysis which allows the vertical arrangements to be conserved from its prototypic reactor, scaled uniformly in the radial direction achieving a flow area reduction of 1/200. Its final design includes several heater rods which simulate the reactor core, and a single heat exchanger representing the steam generators in the prototype. The system behaviors were characterized by its data acquisition system implementing various instruments. In this paper, we present not only a detailed description of the facility components, but also selected experimental results of both steady-state and transient cases. The obtained steady-state test results were utilized for the benchmark of a system code, achieving a capability of accurate simulations with ±3% of maximum deviations. It was followed by qualitative comparisons on the transient test results which indicate that the integral system behaviors in passive LBE-cooled systems are able to be predicted by the code.

Design of a generator control system for small nuclear distributed generation

  • Yoon, Dong-Hee;Jang, Gil-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.311-318
    • /
    • 2011
  • Small-scale reactors have recently attracted attention as a potential power generation source for the future. The Regional Energy Research Institute for Next Generation is currently developing a small-scale reactor called Regional Energy rX 10 MVA (REX-10). The current paper deals with a power system to be used with small-scale reactors for multi-purpose regional energy systems. This small nuclear system can supply electric and thermal energy like a co-generation system. The electrical model of the REX-10 has been developed as a part of the SCADA system. REX-10's dynamic and electromagnetic performance on the power system is analyzed. Simulations are carried out on a test system based on Ulleung Island's power system to validate REX-10 availability on a power system. RSCAD/RTDS and PSS/E software tools are used for the simulation.

An Investigation of Thermal Margin for External Reactor Vessel Cooling(ERVC) in Large Advanced Light Water Reactors(ALWR)

  • Park, Jong-Woon;Jerng, Dong-Wook
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.473-478
    • /
    • 1997
  • A severe accident management strategy, in-vessel retention corium through external reactor vessel cooling(ERVC) is being studied worldwide as a means to prevent reactor vessel failure following a core melt accident. An evaluation of feasibility of this ERVC for a large Advanced Light Water Reactor (ALWR) is presented. To account for the coolability of corium and metal in the reactor vessel, a thermal analysis is performed using an existing method. Results show that the peak heat flux along the inner surface of the reactor vessel lower head has a relatively smaller margin than a small capacity reactor such as AP600 in regards with the critical heat flux attainable at the outer surface of the reactor vessel lower head.

  • PDF

Development of Acoustic Emission Monitoring System for Fault Detection of Thermal Reduction Reactor

  • Pakk, Gee-Young;Yoon, Ji-Sup;Park, Byung-Suk;Hong, Dong-Hee;Kim, Young-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.25-34
    • /
    • 2003
  • The research on the development of the fault monitoring system for the thermal reduction reactor has been performed preliminarily in order to support the successful operation of the thermal reduction reactor. The final task of the development of the fault monitoring system is to assure the integrity of the thermal$_3$ reduction reactor by the acoustic emission (AE) method. The objectives of this paper are to identify and characterize the fault-induced signals for the discrimination of the various AE signals acquired during the reactor operation. The AE data acquisition and analysis system was constructed and applied to the fault monitoring of the small- scale reduction reactor, Through the series of experiments, the various signals such as background noise, operating signals, and fault-induced signals were measured and their characteristics were identified, which will be used in the signal discrimination for further application to full-scale thermal reduction reactor.

High-Temperature Structural Analysis on the Small-Scale PHE Prototype under the Test Condition of Small-Scale Gas Loop (소형가스루프 시험조건에서 소형 공정열교환기 시제품의 고온구조해석)

  • Song, Kee-nam;Hong, S-D;Park, H-Y
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • A PHE (Process Heat Exchanger) is a key component required to transfer heat energy of $950^{\circ}C$ generated in a VHTR (Very High Temperature Reactor) to the chemical reaction that yields a large quantity of hydrogen. A small-scale PHE prototype made of Hastelloy-X is being tested in a small-scale gas loop at Korea Atomic Energy Research Institute. In order to properly evaluate the high-temperature structural integrity of the small-scale PHE prototype, it is very important to impose a proper constraint condition on its structural analysis model. For this effort, we tried to impose several constraint conditions on the structural analysis model and consequently fixed a proper and effective displacement constraints.

Elastic High-temperature Structural Analysis on the Small Scale PHE Prototype Considering the Pipeline Stiffness (배관 강성을 고려한 소형 공정열교환기 시제품에 대한 탄성 고온구조해석)

  • Song, Kee-nam;Kang, J-H;Hong, S-D;Park, H-Y
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.3
    • /
    • pp.48-53
    • /
    • 2011
  • A PHE (Process Heat Exchanger) is a key component required to transfer heat energy of $950^{\circ}C$ generated in a VHTR (Very High Temperature Reactor) to the chemical reaction that yields a large quantity of hydrogen. A small-scale PHE prototype made of Hastelloy-X is being tested in a small-scale gas loop at Korea Atomic Energy Research Institute. In this study, as a part of the evaluation on the high-temperature structural integrity of the small-scale PHE prototype, we carried out macroscopic high-temperature structural analysis of the small-scale PHE prototype under the gas loop test conditions considering the pipeline stiffness.