• Title/Summary/Keyword: Small non-coding RNA

검색결과 65건 처리시간 0.024초

Comparison of miR-106b, miR-191, and miR-30d expression dynamics in milk with regard to its composition in Holstein and Ayrshire cows

  • Marina V. Pozovnikova;Viktoria B. Leibova;Olga V. Tulinova;Elena A. Romanova;Artem P. Dysin;Natalia V. Dementieva;Anastasiia I. Azovtseva;Sergey E. Sedykh
    • Animal Bioscience
    • /
    • 제37권6호
    • /
    • pp.965-981
    • /
    • 2024
  • Objective: Milk composition varies considerably and depends on paratypical, genetic, and epigenetic factors. MiRNAs belong to the class of small non-coding RNAs; they are one of the key tools of epigenetic control because of their ability to regulate gene expression at the post-transcriptional level. We compared the relative expression levels of miR-106b, miR-191, and miR-30d in milk to demonstrate the relationship between the content of these miRNAs with protein and fat components of milk in Holstein and Ayrshire cattle. Methods: Milk fat, protein, and casein contents were determined in the obtained samples, as well as the content of the main fatty acids (g/100 g milk), including: saturated acids, such as myristic (C14:0), palmitic (C16:0), and stearic (C18:0) acids; monounsaturated acids, including oleic (C18:1) acid; as well as long-, medium- and short-chain, polyunsaturated, and trans fatty acids. Real-time stem-loop one-tube reverse transcription polymerase chain reaction with TaqMan probes was used to measure the miRNA expression levels. Results: The miRNA expression levels in milk samples were found to be decreased in the first two months in Holstein breed, and in the first four months in Ayrshire breed. Correlation analysis did not reveal any dependence between changes in the expression level of miRNA and milk fat content, but showed a multidirectional relationship with individual milk fatty acids. Positive associations between the expression levels of miR-106b and miR-30d and protein and casein content were found in the Ayrshire breed. Receiver operating characteristic curve analysis showed that miR-106b and miR-30d expression levels can cause changes in fatty acid and protein composition of milk in Ayrshire cows, whereas miR-106b expression level determines the fatty acid composition in Holsteins. Conclusion: The data obtained in this study showed that miR-106b, miR-191, and miR-30d expression levels in milk samples have peculiarities associated with breed affiliation and the lactation period.

The Use of the Internal Transcribed Spacer Region for Phylogenetic Analysis of the Microsporidian Parasite Enterocytozoon hepatopenaei Infecting Whiteleg Shrimp (Penaeus vannamei) and for the Development of a Nested PCR as Its Diagnostic Tool

  • Ju Hee Lee;Hye Jin Jeon;Sangsu Seo;Chorong Lee;Bumkeun Kim;Dong-Mi Kwak;Man Hee Rhee;Patharapol Piamsomboon;Yani Lestari Nuraini;Chang Uook Je;Seon Young Park;Ji Hyung Kim;Jee Eun Han
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권5호
    • /
    • pp.1146-1153
    • /
    • 2024
  • The increasing economic losses associated with growth retardation caused by Enterocytozoon hepatopenaei (EHP), a microsporidian parasite infecting penaeid shrimp, require effective monitoring. The internal transcribed spacer (ITS)-1 region, the non-coding region of ribosomal clusters between 18S and 5.8S rRNA genes, is widely used in phylogenetic studies due to its high variability. In this study, the ITS-1 region sequence (~600-bp) of EHP was first identified, and primers for a polymerase chain reaction (PCR) assay targeting that sequence were designed. A newly developed nested-PCR method successfully detected the EHP in various shrimp (Penaeus vannamei and P. monodon) and related samples, including water and feces collected from Indonesia, Thailand, South Korea, India, and Malaysia. The primers did not cross-react with other hosts and pathogens, and this PCR assay is more sensitive than existing PCR detection methods targeting the small subunit ribosomal RNA (SSU rRNA) and spore wall protein (SWP) genes. Phylogenetic analysis based on the ITS-1 sequences indicated that the Indonesian strain was distinct (86.2% nucleotide sequence identity) from other strains collected from Thailand and South Korea, and also showed the internal diversity among Thailand (N = 7, divided into four branches) and South Korean (N = 5, divided into two branches) samples. The results revealed the ability of the ITS-1 region to determine the genetic diversity of EHP from different geographical origins.

Effect of metabolic imprinting on growth and development in piglets

  • Ryu, Jae-Hyoung;Lee, Yoo-Kyung;Cho, Sung-Back;Hwang, Ok-Hwa;Park, Sung-Kwon
    • 농업과학연구
    • /
    • 제43권1호
    • /
    • pp.72-79
    • /
    • 2016
  • It has long been known that nutritional and environmental influences during the early developmental period affect the biological mechanisms which determine animal metabolism. This phenomenon, termed 'metabolic imprinting', can cause subtle but long-lasting responses to prenatal and postnatal nutrition and even be passed onto the next generation. A large amount of research data shows that nutrient availability, in terms of quantity as well as quality, during the early developing stages can decrease the number of newborn piglets and their body weight and increase their susceptibility to death before weaning. However, investigation of potential mechanisms of 'the metabolic imprinting' effect have been scant. Therefore, it remains unknown which factors are responsible for embryonic and early postnatal nutrition and which factors are major determinants of body weight and number of new born piglets. Intrauterine undernutrition, for example, was studied using a rat model providing dams 50% restricted nutrients during pregnancy and the results showed significant decreases in birth weight of newborns. This response may be a characteristic of a subset of modulations in embryonic development which is caused by the metabolic imprinting. Underlying mechanisms of intrauterine undernutrition and growth retardation can be explained in part by epigenetics. Epigenetics modulate animal phenotypes without changes in DNA sequences. Epigenetic modifications include DNA methylation, chromatin modification and small non-coding RNA-associated gene silencing. Precise mechanisms must be identified at the morphologic, cellular, and molecular levels by using interdisciplinary nutrigenomics approaches to increase pig production. Experimental approaches for explaining these potential mechanisms will be discussed in this review.

항체 : 치료제로서의 부활 (Resurrection of antibody as a therapeutic drug)

  • 정홍근;정준호
    • IMMUNE NETWORK
    • /
    • 제1권1호
    • /
    • pp.7-13
    • /
    • 2001
  • Currently 18 monoclonal antibodies were approved by FDA for inj ection into humans for therapeutic or diagnostic purpose. And 146 clinical trials are under way to evaluate the efficacy of monoclonal antibodies as anti-cancer agents, which comprise 9 % of clinical trials in cancer therapy field. When considering a lot of disappointment and worries existed in this field during the past 15 years, this boom could be called as resurrection. Antibodies have several merits over small molecule drug. First of all it is easier and faster in development, as proper immunization of the target proteins usually raises good antibody response. The side effects of antibodies are more likely to be checked out in immunohistomchemical staining of whole human tissues. Antibody has better pharmacokinetics, which means a longer half-life. And it is non-toxic as it is purely a "natural drug. Vast array of methods was developed to get the recombinant antibodies to be used as drug. The mice with human immunoglobulin genes were generated. Fully human antibodies can be developed in fast and easy way from these mice through immunization. These mice could make even human monoclonal antibodies against any human antigen like albumin. The concept of combinatorial library was also actively adopted for this purpose. Specific antibodies can be screened out from phage, mRNA, ribosomal library displaying recombinant antibodies like single chain Fvs or Fabs. Then the coding genes of these specific antibodies are obtained from the selected protein-gene units, and used for industrial scale production. Both $na\ddot{i}ve$ and immunized libraries are proved to be effective for this purpose. In post-map arena, antibodies are receiving another spotlight as molecular probes against numerous targets screened out from functional genomics or proteomics. Actually many of these antibodies used for this purpose are already human ones. Through alliance of these two actively growing research areas, antibody would play a central role in target discovery and drug development.

  • PDF

Associations of Single Nucleotide Polymorphisms in miR-146a, miR-196a, miR-149 and miR-499 with Colorectal Cancer Susceptibility

  • Du, Wei;Ma, Xue-Lei;Zhao, Chong;Liu, Tao;Du, Yu-Liang;Kong, Wei-Qi;Wei, Ben-Ling;Yu, Jia-Yun;Li, Yan-Yan;Huang, Jing-Wen;Li, Zi-Kang;Liu, Lei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권2호
    • /
    • pp.1047-1055
    • /
    • 2014
  • Background: MicroRNAs (miRNAs) are an abundant class of endogenous small non-coding RNAs of 20-25 nucleotides in length that function as negative gene regulators. MiRNAs play roles in most biological processes, as well as diverse human diseases including cancer. Recently, many studies investigated the association between SNPs in miR-146a rs2910164, miR-196a2 rs11614913, miR-149 rs229283, miR-499 rs3746444 and colorectal cancer (CRC), which results have been inconclusive. Methodology/Principal Findings: PubMed, EMBASE, CNKI databases were searched with the last search updated on November 5, 2013. For miR-196a2 rs11614913, a significantly decreased risk of CRC development was observed under three genetic models (dominant model: OR = 0.848, 95%CI: 0.735-0.979, P = 0.025; recessive model: OR = 0.838, 95%CI: 0.721-0.974, P = 0.021; homozygous model: OR = 0.754, 95%CI: 0.627-0.907, P = 0.003). In the subgroup analyses, miR-$196a2^*T$ variant was associated with a significantly decreased susceptibility of CRC (allele model: OR = 0.839, 95%CI: 0.749-0.940, P = 0.000; dominant model: OR = 0.770, 95%CI: 0.653-0.980, P = 0.002; recessive model: OR = 0.802, 95%CI: 0.685-0.939, P = 0.006; homozygous model: OR = 0.695, 95%CI: 0.570-0.847, P = 0.000). As for miR-149 rs2292832, the two genetic models (recessive model: OR = 1.199, 95% CI 1.028-1.398, P = 0.021; heterozygous model: OR = 1.226, 95% CI 1.039-1.447, P = 0.013) demonstrated increased susceptibility to CRC. On subgroup analysis, significantly increased susceptibility of CRC was found in the genetic models (recessive model: OR = 1.180, 95% CI 1.008-1.382, P = 0.040; heterozygous model: OR = 1.202, 95% CI 1.013-1.425, P = 0.013) in the Asian group. Conclusions: These findings supported that the miR-196a2 rs11614913 and miR-149 rs2292832 polymorphisms may contribute to susceptibility to CRC.