• Title/Summary/Keyword: Small molecules

Search Result 677, Processing Time 0.026 seconds

Blue Organic Light Emitting triodes with Carbazole Based Small Molecules

  • Park, Jong-Wook;Kim, Dong-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.228-230
    • /
    • 2001
  • We synthesized Bis(3-N-ethylcarbazolyl) terephthalidene(BECP) and Bis(3-7-ethyl-carbazolyl) cyanoterephthalidene(BECCP) and characterized EL properties of these materials. Our device shows a strong blue emission at 472 nm with a luminance efficiency of 0.9 lm/W at a voltage, a current density, and a brightness of 8 V, 5.7 mA/cm$^2$, and 130 cd/m$^2$, respectively.

  • PDF

Blue Organic Light Emitting Diodes with Carbazole Based Small Molecules

  • Park, Jong-Wook;Woo, Hyung-Suk;Caroll, David;Lee, Ji-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2001.08a
    • /
    • pp.157-158
    • /
    • 2001
  • We synthesized Bis(3-N-ethylcarbazolyl) terephthalidene(BECP) and Bis(3-N-ethylcarbazolyl) cyanoterephthalidene (BECCP) and characterized EL properties of these materials. Our device shows a strong blue emission at 472 nm with a luminance efficiency of 0.9 lm/Wat a voltage, a current density. and a brightness of 8 V, 5.7 $mA/cm^2$, and 130 $cd/m^2$, respectively.

  • PDF

Optical Simulation for High Efficiency OLEDs

  • Jung, Boo-Young;Jung, Sung-Goo;HwangBo, Chang-Kwon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.966-969
    • /
    • 2006
  • An optical model based on the optical thin-film theory is derived to calculate the output radiance of small molecules organic light-emitting diodes (OLEDs). We have designed the high efficiency OLEDs using the reflectance phase control of dielectric layers. It is found that OLED with a single $TiO_2$ dielectric layer is a good candidate to enhance the outcoupling efficiency and increase the color purity.

  • PDF

Advances in High TG Hole Transporters

  • Gelsen, Olaf;Lischewski, V.;Leonhardt, J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.355-356
    • /
    • 2006
  • The glass transition behavior of OLED materials is very important for both processing and lifetime. We report about the correlation between the structure of selected small molecule Hole Transport Materials (HTM's) and their glass transition temperature. The thermal stability of devices manufactured with them was investigated. The results give researchers and engineers some information which are helpful for designing new molecules and processing them in device making.

  • PDF

Isothiocyanates in Brassica: Potential Anti Cancer Agents

  • Sharma, Anubhuti;Sharma, Ashok;Yadav, Prashant;Singh, Dhiraj
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.9
    • /
    • pp.4507-4510
    • /
    • 2016
  • Isothiocyanates are naturally occurring small molecules that are formed from glucosinolate precursors of cruciferous vegetables. Many isothiocyanates, both natural and synthetic, display anti-carcinogenic activity because they reduce activation of carcinogens and increase their detoxification. This minireview summarizes the current knowledge on isothiocyanates and focuses on their role as potential anti-cancer agents.

Synthesis and Cyclization of Aromatic Polyhydroxyamides. 1. Model Compound Study

  • Kim, Hae-Young;Kim, Myung-Kyoon;Baik, Doo-Hyun;Simon Kantor
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.10a
    • /
    • pp.37-40
    • /
    • 1998
  • Aromatic polybenzoxazoles have been known since 1964 as a class of aromatic heterocyclic polymers that exhibit excellent thermal stability. Polyhydroxyamides (PHA), precursor polymers to PBO, can cyclize to farm stable heterocyclic polymers with the simultaneous release of small molecules, which can be expected to act as a fire quencher. (omitted)

  • PDF

Revisiting Hepatoprotective Natural Products from a Biological Point of View

  • Kim, Hong-Pyo;Kim, Young-Choong
    • Natural Product Sciences
    • /
    • v.17 no.3
    • /
    • pp.165-174
    • /
    • 2011
  • Naturally occurring small molecules from plants, microorganisms, and animals allow the design of drugs that can be beneficial in virtually all kinds of human diseases. Liver diseases with diverse etiologies such as viral infection, chemical intoxication, and metabolic fat accumulation are one of the leading causes of human mortality. Unfortunately, however, there are few effective drugs available capable of stopping or reversing the progress of liver disease. Here, we discuss the current advances in developing hepatoprotective natural products for several arrays of liver disease pathogenesis.

Use of ELISA for the Residue Analysis of Pesticides (ELISA 기법을 이용한 농약(農藥)의 잔류분석(殘留分析))

  • Lee, Kang-Bong;Suh, Yong-Tack
    • Korean Journal of Environmental Agriculture
    • /
    • v.12 no.3
    • /
    • pp.298-308
    • /
    • 1993
  • Immunochemical assay, ELISA for small molecules such as pesticides are rapid, sensitive, cost effective and can easily analyze with large samples. ELISA is one of several powerful biotechnologies immediately applicable to pesticide analysis. This review lists the advantages and disadvantages of the ELISA and elucidate the steps in assay development using examples from this laboratory. The focus is primarily on hapten synthesis strategies, protein conjugation, Immunization, assay format, and assay validation.

  • PDF

NMR Tools to Decipher Dynamic Structure of RNA

  • Lee, Janghyun;Choi, Byong-Seok
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.2
    • /
    • pp.55-62
    • /
    • 2017
  • It is now well established that RNAs exhibit fundamental roles in regulating cellular processes. Many of these RNAs do not exist in a single conformation. Rather, they undergo dynamic transitions among many different conformations to mediate critical interactions with other biomolecules such as proteins, RNAs, DNAs, or small molecules. Here, we briefly review NMR techniques that describe the dynamic behavior of RNA by determining structural, kinetic, and thermodynamic properties.