• Title/Summary/Keyword: Small molecules

Search Result 669, Processing Time 0.041 seconds

Application of mid-infrared TDLAS to various small molecule diagnostics

  • Lee, Young-Sik
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.25-25
    • /
    • 2010
  • The spectroscopy over a region from 3 to 17 ${\mu}m$ based on the tuneable diode lasers (TDLAS) is the most powerful technique for in situ studies of the diagnostics of small molecules. The increasing interest in small molecules especially containing carbon, oxygen, hydrogen, and fluorine containing ones can be fulfilled by TDLAS at 0.0001 cm-1 resolution, because most of these compounds are infrared active. TDLAS provides a means of determining the absolute concentrations of the ground states of stable and transient molecular species, which can be employed for the time dependent studies in sub micro second scale. Information about gas temperature and population densities can also be derived from TDLAS measurements. Collisional energy transfer between the small molecules can be studied with TDLAS. Also, a variety of free radicals and molecular ions have been detected by TDLAS. Since plasmas with molecular feed gases are used in many applications, there are new applications in industrial field. Recently, the development of quantum cascade lasers (QCLs) offers an attractive new option for TDLAS.

  • PDF

Electronic and carrier transport properties of small molecule donors

  • Valencia-Maturana, Ramon;Pao, Chun-Wei
    • Coupled systems mechanics
    • /
    • v.6 no.1
    • /
    • pp.75-96
    • /
    • 2017
  • As electron donor/acceptor materials for organic photovoltaic cells, small-molecules donors/acceptor are attracting more and more attention. In this work, we investigated the electronic structures, electrochemical properties, and charge carrier transport properties of four recently-synthesized small-molecule donors/acceptor, namely, DPDCPB (A), DPDCTB (B), DTDCPB (A1), and DTDCTB (B1), by a series of ab initio calculations. The calculations look into the electronic structure of singly oxidized and reduced molecules, the first anodic and cathodic potentials, and the electrochemical gaps. Results of our calculations were in accord with those from experiments. Using Marcus theory, we also computed the reorganization energies of hole/electron hoppings, as well as hole/electron transfer integrals of multiple possible molecular dimer configurations. Our calculations indicated that the electron/hole transport properties are very sensitive to the relative separations/orientations between neighboring molecules. Due to high reorganization energies for electron hopping, the hole mobilities in the molecular crystals are at least an order of magnitude higher than the electron mobilities.

Optical study of environmental and light induced effects on 8-hydroxyquinoline derivative metal complex small molecules thin films

  • Shukla, Vivek Kumar;Datta, Debjit;Kumar, Satyendra
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.629-631
    • /
    • 2004
  • We report on the synthesis and film formation on a variety of small molecules such as $Alq_3$, $Znq_2$, and $Inq_3$, used as light emitting material in organic light emitting diodes (OLEDs) . The organic materials are usually susceptible to environmental aging and photo-oxidation, which influences their viability for commercial utility. Here, we examine the effects of oxygen and light on these organic materials to enhance the efficiency and lifetime of OLEDs. Optical techniques - ellipsometry, photoluminescence and infrared spectroscopies- have been used to study of environmental and light induced effects on 8-hydroxyquinoline derivative metal complex small molecules thin films

  • PDF

Chemical Genomics and Medicinal Systems Biology: Chemical Control of Genomic Networks in Human Systems Biology for Innovative Medicine

  • Kim, Tae-Kook
    • BMB Reports
    • /
    • v.37 no.1
    • /
    • pp.53-58
    • /
    • 2004
  • With advances in determining the entire DNA sequence of the human genome, it is now critical to systematically identify the function of a number of genes in the human genome. These biological challenges, especially those in human diseases, should be addressed in human cells in which conventional (e.g. genetic) approaches have been extremely difficult to implement. To overcome this, several approaches have been initiated. This review will focus on the development of a novel 'chemical genetic/genomic approach' that uses small molecules to 'probe and identify' the function of genes in specific biological processes or pathways in human cells. Due to the close relationship of small molecules with drugs, these systematic and integrative studies will lead to the 'medicinal systems biology approach' which is critical to 'formulate and modulate' complex biological (disease) networks by small molecules (drugs) in human bio-systems.

Enhanced Performance in Isoindigo Based Organic Small Molecules Field Effect Transistors Using Solvent Additives

  • Park, Yu-Jeong;Jo, Sin-Uk;Seo, Jeong-Hwa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.392.1-392.1
    • /
    • 2014
  • Isoindigo based small molecules have attracted much attention in the field of optoelectronic devices due to their broad absorbance and high charge carrier mobilitiies. Herein, we investigate the field effect transistor characteristics of a series of isoindigo based donor-acceptor-donor (D-A-D) small molecules containing a variable number of thiophene moieties (named IDT, ID2T, and ID3T) which form pi-bridges between the D and A moieites and a different donor moiety (IDED). In order to improve the carrier mobility, 1-chloronaphthalene (CN) and 1,8-diiodooctane (DIO) as solvent additives were used. The film morphology, crystallinity and optical properties of the materials processed with various concentrations of solvent additives were investigated through atomic force microscopy (AFM), X-ray diffraction (XRD) and UV-vis absorption spectroscopy.

  • PDF

Energy Transfer Between Diatomic Molecules

  • Kim, Yoo-Hang;Shin, Hyung-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.2
    • /
    • pp.88-96
    • /
    • 1987
  • The effects of initial vibrational energy on VV energy transfer in the collinear collision of two diatomic molecules, either homonuclear or heteronuclear, has been studied over a range of collision energies in classical mechanics. When initial vibrational energy is very large, only a small fraction of vibrational energy in the excited molecule is transferred to the colliding partner. In this case, the VV step is found to be strongly coupled with VT during the collision. At low collision energies, energy transfer in the homonuclear case of $O_2$+ $O_2$ with small initial vibrational energy is found to be very inefficient. In the heteronuclear case of CH + HC with the initial energy equivalent to one vibrational quantum, VV energy exchange is found to be very efficient at such energies. Between 0.3 and 0.5 ev, nearly all of vibrational energy of the excited molecule with one to about three vibrational quanta in CH + HC is efficiently transferred to the colliding partner through pure VV process in a sequence of down steps during the collision. The occurrence of multiple impacts during the collision of two heteronuclear molecules and the collisional bond dissociation of homonuclear molecules are also discussed.

All-Electron Relativistic SCF Calculations for Light Atoms and Diatomic Molecules; Correct Nonrelativistic Limit Calculations with a Relativistic Method

  • Baeck, Kyoung-Koo;Lee, Yoon-Sup
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.6
    • /
    • pp.699-705
    • /
    • 1991
  • Procedures to perform reliable relativistic self-consistent-field (RSCF) calculations are described. Using light atoms and molecules, it is demonstrated that the present method always yields correct nonrelativistic limit by employing a sufficiently large value for the speed of light in RSCF calculations. Many problems associated with analytic expansions of the Dirac equations can be computationally avoided by kinetically balancing the basis sets for large and small component spinors. Results of RSCF calculations for Ne, Kr, $H_2$, and LiH indicate very small relativistic effects for these systems as expected. Trends found is these molecules, however, may be useful in understanding relativistic effects for molecules with similar valence electronic structures and heavier atoms.

Two-dimensional Surface Structures of Arenthiols Studied by STM

  • Gwon, Gi-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.89-89
    • /
    • 2012
  • Arrangement of individual atoms and molecules with atomic precision and understanding the resulting properties at the molecular level are ultimate goals of chemistry, biology, and materials science. For the past three decades, scanning probe microscopy has made strides towards these goals through the direct observation of individual atoms and molecules, enabling the discovery of new and unexpected phenomena. This talk will discuss the origin of forces governing motion of small organic molecules and their extended self-assembly into two-dimensional surface structures by direct observation of individual molecules using scanning tunneling microscopy (STM).

  • PDF

Synthesis of Small Molecule-Peptide Conjugates as Potential Whitening Agents

  • Lee, Hye-Suk;Shin, Kyong-Hoon;Ryu, Geun-Seok;Chi, Gyeong-Yup;Cho, In-Shik;Kim, Han-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.3004-3008
    • /
    • 2012
  • Small molecule conjugated peptides were prepared by solid-phase synthesis as potential novel whitening agents, and their melanogenesis inhibitory activities were investigated. The conjugated small molecules were well-known materials as tyrosinase inhibitors, and peptides were selected from the sequences that are known to antagonize melanocortin receptor 1 (MC1R). Most of small molecules-peptide conjugates showed superior melanin inhibition activity to kojic acid and arbutin. Among these, almost all compounds have -AR- sequence. From this study, we concluded that the small molecule conjugated peptides containing -AR- sequence have melanogenesis inhibitory activities and have potential to be used as novel whitening agents.