• Title/Summary/Keyword: Small code length

Search Result 53, Processing Time 0.018 seconds

Improvement of crossflow model of MULTID component in MARS-KS with inter-channel mixing model for enhancing analysis performance in rod bundle

  • Yunseok Lee;Taewan Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4357-4366
    • /
    • 2023
  • MARS-KS, a domestic regulatory confirmatory code of Republic of Korea, had been developed by integrating RELAP5/MOD2 and COBRA-TF. The integration of COBRA-TF allowed to extend the capability of MARS-KS, limited to one-dimensional analysis, to multi-dimensional analysis. The use of COBRA-TF was mainly focused on subchannel analyses for simulating multi-dimensional behavior within the reactor core. However, this feature has been remained as a legacy without ongoing maintenance. Meanwhile, MARS-KS also includes its own multidimensional component, namely MULTID, which is also feasible to simulate three-dimensional convection and diffusion. The MULTID is capable of modeling the turbulent diffusion using simple mixing length model. The implementation of the turbulent mixing is of importance for analyzing the reactor core where a disturbing cross-sectional structure of rod bundle makes the flow perturbation and corresponding mixing stronger. In addition, the presence of this turbulent behavior allows the secondary transports with net mass exchange between subchannels. However, a series of assessments performed in previous studies revealed that the turbulence model of the MULTID could not simulate the aforementioned effective mixing occurred in the subchannel-scale problems. This is obvious consequence since the physical models of the MULTID neglect the effect of mass transport and thereby, it cannot model the void drift effect and resulting phasic distribution within a bundle. Thus, in this study, the turbulence mixing model of the MULTID has been improved by means of the inter-channel mixing model, widely utilized in subchannel analysis, in order to extend the application of the MULTID to small-scale problems. A series of assessments has been performed against rod bundle experiments, namely GE 3X3 and PSBT, to evaluate the performance of the introduced mixing model. The assessment results revealed that the application of the inter-channel mixing model allowed to enhance the prediction of the MULTID in subchannel scale problems. In addition, it was indicated that the code could not predict appropriate phasic distribution in the rod bundle without the model. Considering that the proper prediction of the phasic distribution is important when considering pin-based and/or assembly-based expressions of the reactor core, the results of this study clearly indicate that the inter-channel mixing model is required for analyzing the rod bundle, appropriately.

Parametric Study of Dynamic Soil-pile-structure Interaction in Dry Sand by 3D Numerical Model (3차원 수치 모델을 이용한 건조사질토 지반-말뚝-구조물 동적 상호작용의 매개변수 연구)

  • Kwon, Sun-Yong;Yoo, Min-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.9
    • /
    • pp.51-62
    • /
    • 2016
  • Parametric studies for various site conditions by using 3d numerical model were carried out in order to estimate dynamic behavior of soil-pile-structure system in dry soil deposits. Proposed model was analyzed in time domain using FLAC3D which is commercial finite difference code to properly simulate nonlinear response of soil under strong earthquake. Mohr-Coulomb criterion was adopted as soil constitutive model. Soil nonlinearity was considered by adopting the hysteretic damping model, and an interface model which can simulate separation and slip between soil and pile was adopted. Simplified continuum modeling was used as boundary condition to reduce analysis time. Also, initial shear modulus and yield depth were appropriately determined for accurate simulation of system's nonlinear behavior. Parametric study was performed by varying weight of superstructure, pile length, pile head fixity, soil relative density with proposed numerical model. From the results of parametric study, it is identified that inertial force induced by superstructure is dominant on dynamic behavior of soil-pile-structure system and effect of kinematic force induced by soil movement was relatively small. Difference in dynamic behavior according to the pile length and pile head fixity was also numerically investigated.

A Data Hiding Scheme for Binary Image Authentication with Small Image Distortion (이미지 왜곡을 줄인 이진 이미지 인증을 위한 정보 은닉 기법)

  • Lee, Youn-Ho;Kim, Byoung-Ho
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.2
    • /
    • pp.73-86
    • /
    • 2009
  • This paper proposes a new data hiding scheme for binary image authentication with minimizing the distortion of host image. Based on the Hamming-Code-Based data embedding algorithm, the proposed scheme makes it possible to embed authentication information into host image with only flipping small number of pixels. To minimize visual distortion, the proposed scheme only modifies the values of the flippable pixels that are selected based on Yang et al's flippablity criteria. In addition to this, by randomly shuffling the bit-order of the authentication information to be embedded, only the designated receiver, who has the secret key that was used for data embedding, can extract the embedded data. To show the superiority of the proposed scheme, the two measurement metrics, the miss detection rate and the number of flipped pixels by data embedding, are used for the comparison analysis between the proposed scheme and the previous schemes. As a result of analysis, it has been shown that the proposed scheme flips smaller number of pixels than the previous schemes to embed the authentication information of the same bit-length. Moreover, it has been shown that the proposed scheme causes smaller visual distortion and more resilient against recent steg-analysis attacks than the previous schemes by the experimental results.